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Abstract

Harmonic potentials provide globally convergent potential fields that are provably free of local minima. Due to its analytical format,
it is particularly suitable for generating safe and reliable robot navigation policies. However, for complex environments that consist
of a large number of overlapping non-sphere obstacles, the computation of associated transformation functions can be tedious. This
becomes more apparent when: (i) the workspace is initially unknown and the underlying potential fields are updated constantly
as the robot explores it; (ii) the high-level mission consists of sequential navigation tasks among numerous regions, requiring the
robot to switch between different potentials. Thus, this work proposes an efficient and automated scheme to construct harmonic
potentials incrementally online as guided by the task automaton. A novel two-layer harmonic tree (HT) structure is introduced that
facilitates the hybrid combination of oriented search algorithms for task planning and harmonic-based navigation controllers for
non-holonomic robots. Both layers are adapted efficiently and jointly during online execution to reflect the actual feasibility and
cost of navigation within the updated workspace. Global safety and convergence are ensured both for the high-level task plan and
the low-level robot trajectory. Known issues such as oscillation or long-detours for purely potential-based methods and sharp-turns
or high computation complexity for purely search-based methods are prevented. Extensive numerical simulation and hardware
experiments are conducted against several strong baselines.

1. Introduction

Autonomous robots can replace humans to operate and ac-
complish complex missions in hazardous environments. How-
ever, it is a demanding engineering task to ensure both the safety
and efficiency during execution, especially when the environ-
ment is only partially known. First, the control strategy that
drives the robot from an initial state to the goal state while stay-
ing within the allowed workspace (see e.g., Karaman & Fraz-
zoli (2011); LaValle (2006); Koditschek (1987); Khatib (1999)),
should be reactive to the newly-discovered obstacles online.
Second, the planning method that decomposes and schedules
sub-tasks (see e.g., Ghallab et al. (2004); Fainekos et al. (2009))
should be adaptive to the actual feasibility and cost of sub-tasks
given the updated environment. Existing work often ignores the
close dependency of these two modules and treats them sepa-
rately, which can lead to inefficient or even unsafe executions,
as also motivated in Garrett et al. (2021); Kim et al. (2022).
How to construct a fully integrated task and motion planning
scheme with provable safety and efficiency guarantee within
unknown environments still remains challenging, see Loizou &
Rimon (2022); Rousseas et al. (2022b).

1This work was supported by the National Natural Science Foundation
of China (NSFC) under grants 62203017, T2121002, U2241214; and by the
Fundamental Research Funds for the central universities. Contact: wangs,
meng.guo@pku.edu.cn.

1.1. Related Work

As the most relevant to this work, the method of artificial
potential fields from Khatib (1986); Warren (1989); Panagou
(2014); Rousseas et al. (2022a) introduces an intuitive yet pow-
erful framework for tackling the safety and convergence prop-
erty during navigation. The main idea is to introduce attractive
potentials to the goal state and repulsive potentials from ob-
stacles and the workspace boundary. However, naive design
of these potentials would introduce undesired local minima,
where the combined forces are zero and thus prevents further
progress. Navigation functions (NF) pioneered by Koditschek
(1987) provably guarantee that such minima are saddle points
and more importantly of measure zero. Although the underly-
ing static workspace could be as general as forest of stars, some
key design parameters require fine-tuning for the safety and
convergence properties to hold. The work in Fan et al. (2022)
employs the conformal transformations to map the multiply-
connected workspaces to a sphere world without any tuning pa-
rameter, which however requires a numerical solution of contin-
uous integrals. The work in Huber et al. (2019, 2024); Dahlin
& Karayiannidis (2023a) utilizes reactive potentials to guide
dynamic systems around obstacles. Model predictive control
has been adopted in Dahlin & Karayiannidis (2023b); Yu et al.
(2015); Faulwasser & Findeisen (2015); Sánchez et al. (2021)
to track the derived potentials. Moreover, harmonic potentials
proposed in Kim & Khosla (1992); Loizou (2011, 2017); Vlan-
tis et al. (2018) alleviate such limitations by introducing a novel
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Figure 1: Left: Illustration of the proposed framework, which consists of the initial synthesis, the online adaption of the task plan and harmonic potentials, and the
squircle estimation. Right: Oscillations and long detours might occur via classic navigation functions as shown in the red, violet and blue trajectories.

transformation scheme from obstacle-cluttered environments to
point worlds, while retaining these properties. Furthermore, re-
cent work in Rousseas et al. (2021, 2022b,a) resolves the need
for a diffeomorphic mapping onto sphere disks, by adopting a
wider set of basis functions for workspace boundaries. Never-
theless, such methods require solving numerous complex para-
metric optimizations, instead of an analytic solution. Lastly,
despite of their global convergence guarantee, there are several
notable limitations as illustrated in Fig. 1: (i) oscillations or
jitters may appear especially when the trajectory slides along
the boundary of obstacles or crosses narrow passages; (ii) dras-
tically different trajectories may develop within the same po-
tential field when the initial pose is changed slightly; (iii) the
resulting trajectory is far from the optimal one in terms of tra-
jectory length or control efforts; (iv) the final orientation at the
goal pose can not be controlled freely.

Moreover, sampling-based search methods, such as RRT‹

in Karaman & Frazzoli (2011), PRM in Hsu et al. (2006), FMT‹

in Janson et al. (2015), have become the dominant paradigm to
tackle high-dimensional motion planning problems, especially
for systems under geometric and dynamic constraints. How-
ever, one potential limiting factor is the high computational
complexity due to the collision checking process between sam-
pled states and the excessive sampling to reach convergence.
Since artificial potential fields are analytical with theoretical
guarantee, it make sense to combine these two paradigms: vec-
tor fields are used in Ko et al. (2013) to bias the branching
of search trees, thus improving the efficiency of sampling and
reducing the number of iterations; similar ideas are adopted
in Qureshi & Ayaz (2016); Tahir et al. (2018) as the potential-
based RRT‹, by designing directional samples as induced by
the underlying potential fields. However, these methods mostly
focus on static environments for simple navigation tasks, where
the planning is performed offline and neither the potential fields
nor the search structure are adapted during execution.

When a robot is deployed in a partially-unknown environ-
ment, an online approach is required such that the underly-
ing trajectory adapts to real-time measurements of the actual
workspace such as new obstacles. For instances, a fully auto-
mated tuning mechanism for navigation functions is presented
in Filippidis & Kyriakopoulos (2011), while the notion of dy-

namic windows is proposed in Ogren & Leonard (2005) to han-
dle dynamic environment. Moreover, the harmonic potentials-
based methods are developed further in Rousseas et al. (2022b)
for unknown environments, where the weights over harmonic
basis are optimized online. A similar formulation is adopted
in Loizou & Rimon (2022) where the parameters in the har-
monic potentials are adjusted online to ensure safety and global
convergence. Furthermore, a semantic perceptual feedback me-
thod is introduced in Vasilopoulos et al. (2022) to recognize
the size of the obstacles from a pre-trained dataset. Lastly,
the scenario of time-varying targets is analyzed in Li & Tan-
ner (2018) by designing an attractive potential that evolves with
time. Similarly, dynamic environments are considered in Hu-
ber et al. (2022); Dahlin & Karayiannidis (2023a) by allow-
ing time-varying and reactive potentials. On the other hand,
search-based methods are also extended to unknown environ-
ments where various real-time revision techniques are proposed
in Otte & Frazzoli (2016); Shen et al. (2021). However, less
work can be found where the search tree and the underlying
potentials should be updated simultaneously and dependently.

Last but not least, the desired task for the robot could be
more complex than the point-to-point navigation. Linear Tem-
poral Logics (LTL) in Baier & Katoen (2008) provide a for-
mal language to describe complex high-level tasks, such as se-
quential visit, surveillance and response. Many recent papers
can be found that combine robot motion planning with model-
checking-based task planning, e.g., a single robot under LTL
tasks Fainekos et al. (2009); Guo et al. (2018); Lindemann et al.
(2021), a multi-robot system under a global task Guo & Di-
marogonas (2015); Luo et al. (2021); Leahy et al. (2021), How-
ever, many aforementioned work assumes an existing low-level
navigation controller, or considers a simple and known environ-
ment with circular and non-overlapping obstacles. The synergy
of complex temporal tasks and harmonic potential fields within
unknown environments has not been investigated.

1.2. Our Method

This work proposes an automated planning framework term-
ed that utilize harmonic potentials for navigation and oriented
search trees for planning, as illustrated in Fig. 1. The design and
construction of the search tree is specially tailored for the task
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automaton and co-designed with the underlying navigation con-
trollers based on harmonic potentials. Intermediate waypoints
are introduced between task regions to improve task efficiency
and smoothness of the robot trajectory. Additionally, a novel
orientation-aware harmonic potential is proposed for nonholo-
nomic robots, based on which a nonlinear tracking controller
is utilized to ensure safety. Furthermore, during online execu-
tion, as the robot explores the environment gradually, an ef-
ficient adaptation scheme is proposed to update the estimated
obstacles, the search tree and the harmonic potentials simul-
taneously, where intermediate variables are saved and re-used.
For validation, extensive simulations and hardware experiments
are conducted for nontrivial tasks.

Main contribution of this work lies in the hybrid framework
that combines two powerful methods in control and planning,
for non-holonomic robots to accomplish complex tasks in un-
known environments. Specifically, it includes: (i) the two-layer
and automaton-guided Harmonic trees that unify task planing
and motion control; (ii) a new “purging” method for forests
of overlapping squircles, which is tailored for the online case
where obstacles are added gradually; (iii) an integrated method
to update the estimated obstacles, the Harmonic potentials and
the search trees simultaneously and recursively online. It has
been shown via both theoretical analyses and numerical stud-
ies that it avoids the common problem of oscillation or long-
detours for purely potential-based methods, and sharp-turns or
high computation complexity for purely search-based methods.

1.3. Note for Practitioners

To apply the proposed method to practical systems, the fol-
lowing steps are recommended given the framework in Fig. 1:
(i) the workspace model should be constructed w.r.t. the spec-
ified task including the regions of interest and their properties,
as modeled in Sec. 2.2; (ii) the abstraction method and rela-
tive distance for the vertices within the harmonic tree should be
chosen according to the characteristics of the workspace, such
as size and typical structure, as described in Sec. 4.1.1; (iii) the
nonlinear tracking controller in Sec. 4.1.3 is tuned for the spe-
cific hardware platform such that it can track the gradient of
the oriented harmonic potentials in Sec. 4.1.2 with a desired ac-
curacy; (iv) the segmentation and clustering of the online data
points for the obstacle estimation should be adjusted according
the range and resolution of the Lidar sensor, as mentioned in
Sec. 4.1.2; (v) the update rate of the estimated obstacles and
the condition for replanning should be tuned according to the
estimated density of obstacles, as discussed in Sec. 4.2.

2. Preliminaries

2.1. Diffeomorphic Transformation and Harmonic Potentials

A 2D sphere world M is defined as a compact and con-
nected subset of R2, which has an outer boundary O0 “ tq P
R2 : }q´q0}

2´ρ20 ď 0u centered at q0 with radius ρ0, and inner
boundaries of M disjoint sphere obstacles Oi “ tq P R2 : }q´
qi}

2´ ρ2i ď 0u centered at qi with radius ρi, for i “ 1, ¨ ¨ ¨ ,M .

Figure 2: Illustration of the diffeomorphic transformation from sphere word M
to bounded point world P̃ and to unbounded point world P .

There is a goal point denoted by qG P M. By using a diffeo-
morphic transformation proposed in Loizou (2017), this sphere
world can be mapped to an unbounded point world, as shown in
Fig. 2. It is denoted by P “ R2ztP1, ¨ ¨ ¨ , PMu, which consists
of M point obstacles Pi P R2. Specifically, the diffeomorphic
transformation ΦMÑPpqq from sphere world to point world is
constructed as follows:

ΦMÑPpqq fi ψ ˝ ΦMÑP̃pqq,

ΦMÑP̃pqq fi idpqq `
M
ÿ

i“1

`

1´ sδpq, Oiq
˘

pqi ´ qq,

ψpq̃q fi
ρ0

ρ0 ´ ||q̃ ´ q0||
pq̃ ´ q0q ` q0,

(1)

where ΦMÑP̃pqq transforms the sphere world M to a bounded
point world P̃ “ O0ztP̃1, ¨ ¨ ¨ , P̃Mu, of which P̃i is the inner
point-shape obstacle with P̃i “ ΦMÑP̃pqiq, for i “ 1, ¨ ¨ ¨ ,M ;
the summed element sδpq, Oiq is the contraction-like transfor-
mation for obstacle Oi, which is composed by ηδpxq ˝ σpxq ˝
bipxq as the switch function, smoothing function and distance
function, respectively. The exact definitions can be found in
Loizou (2017) and the supplementary files. To obtain an infinite
harmonic domain, it is essential to map the bounded point world
into the unbounded point world via the diffeomorphic transfor-
mation ψpq̃q. Given the point world P , its associated harmonic
potential function, is introduced in Loizou & Rimon (2022,
2021) and defined as follows.

Definition 1. The harmonic potential function in a point world,
denoted by ϕP : P Ñ R`, is defined as:

ϕPpxq fi ϕpx, PGq ´
1

K

M
ÿ

i“1

ϕpx, Piq, (2)

where ϕpx, qq “ ln
`

}x´ q}2
˘

is the primitive harmonic func-
tion for x, q P R2; ϕpx, PGq is the potential for the transformed
goal PG “ ΦMÑPpqGq, whereas ϕpx, Piq for the obstacle Pi,
where i “ 1, ¨ ¨ ¨ ,M ; K ě 1 is a tuning parameter. ■

Lastly, the logistic function is used to transform the un-
bounded range of ϕP to a finite interval r0, µs for µ ě 1.

2.2. Linear Temporal Logic and Büchi Automaton
The basic ingredients of Linear Temporal Logic (LTL) for-

mulas are a set of atomic propositionsAP , and several Boolean
or temporal operators. Atomic propositions are Boolean vari-
ables that can be either true or false. The syntax of LTL is
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Figure 3: Left: Robot in the workspace with overlapping squircles and several
regions of interest. Right: Estimated (in black) and inflated (in blue) obstacles.

defined as: φ fi J | p | φ1 ^ φ2 | ␣φ | ⃝ φ | φ1 Uφ2, where
J fi True, p P AP , ⃝ (next), U (until) and K fi ␣J. The
derivations of other operators, such as l (always), ♢ (eventu-
ally),ñ (implication) are omitted here for brevity. A complete
description of the semantics and syntax of LTL can be found
in Baier & Katoen (2008). Moreover, there exists a Nondeter-
ministic Büchi Automaton (NBA) for formula φ as follows:

Definition 2. A NBA A fi pS, Σ, δ, pS0, SF qq is a 4-tuple,
where S are the states; Σ “ AP ; δ : SˆΣÑ 2S are transition
relations; S0, SF Ď S are initial and accepting states. ■

An infinite word w over the alphabet 2AP is defined as an
infinite sequence W “ σ1σ2 ¨ ¨ ¨ , σi P 2AP . The language of
φ is defined as the set of words that satisfy φ, namely, L “

Wordspφq “ tW |W |ù φu and |ù is the satisfaction rela-
tion. Additionally, the resulting run of w within A is an infi-
nite sequence ρ “ s0s1s2 ¨ ¨ ¨ such that s0 P S0, and si P S,
si`1 P δpsi, σiq hold for all index i ě 0. A run is called ac-
cepting if it holds that infpρqXSF ‰ H, where infpρq is the set
of states that appear in ρ infinitely often. In general, an accept-
ing run has the prefix-suffix structure from an initial state to an
accepting state that is contained in a cyclic path. Typically, the
size of A is double exponential to the length of formula φ.

3. Problem Description

Consider a mobile robot that occupies a circular area with
radius rr ą 0 and follows the unicycle dynamics:

9x “ υ cospθq, 9y “ υ sinpθq, 9θ “ ω, (3)

where q “ px, yq P W is the robot position and θ P r´π, πs
as its orientation; pυ, ωq are its linear and angular velocities as
control inputs. The workspace W0 Ă R2 is compact and con-
nected, withM potentially overlapping internal obstacles Oi Ă

W0, @i P t1, ¨ ¨ ¨ ,Mu. Considering the robot size, the outer
workspace W0 and inner obstacle Oi are inflated by a margin
rr, denoted by W̃0 and Õi. Therefore, the feasible workspace
is given by W fi W̃0z

ŤM
i“1 Õi.

Each obstacle Oi belongs to a type of obstacle called squir-
cle, which are particularly useful for representing walls and
corners, see Li & Tanner (2018). As shown in Fig. 4, a squir-
cle interpolates smoothly between a circle and a square, while
avoiding non-differentiable corners. In particular, a unit squir-
cle centered at the origin in R2 is given by:

βscpqq fi
q2 `

b

q4 ´ 4κ2 rpq⊺ e1qpq⊺ e2qs
2

2
´ 1,

(4)

qi
i
r

iO

Oi
i
i
r ⊻

qi⊻
iO ⊻

iO

ɶ

(b)(a)

0.6

0.99

ù

ù
p

=

=

Figure 4: (a) Squircles with the parameter κ “ 0.6 and κ “ 0.99; (b) Ray
scaling process. The boundary of the star-shaped obstacle is mapped onto the
boundary of a sphere (Left). The boundary of the child obstacle is mapped onto
a segment of the boundary of the parent obstacle (Right).

where κ P p0, 1q is the curvature; e1, e2 are unit basis in R2.
Non-unit and rotated squircles with general centers can be de-
rived via scaling, translation and rotation.

Assumption 1. The workspace boundary and inner obstacles
all follow the model of squircles in (4). ■

Initially at t “ 0, the workspace is only partially known
to the robot, i.e., the outer boundary and some inner obstacles.
Starting from any valid initial state pq0, θ0q, the robot can nav-
igate within the workspace and observe more obstacles, via a
range-limited sensor modeled as follows:

Spqq fi tq̂ PW | pq̂ P Drspqqq ^ pLpq, q̂q ĂWqu , (5)

where Spqq is the set of points q̂ observed by the robot at posi-
tion q P W; Drspqq is a disk centered at q with radius rs and
Lpq, q̂q is the line connecting q and q̂. As shown in Fig. 3, it
returns the 2D point cloud from the robot to any blocking sur-
face within the sensing range. This model mimics a 360˝ Lidar
scanner as also used in Rousseas et al. (2022b). Given the mea-
surements, an observed obstacle can be estimated accordingly.

Assumption 2. An obstacle Oi P W0 can be estimated accu-
rately once Spqq in (5) intersects with its occupied area. ■

Note that the implication and relaxation of Assumption 2
are discussed in Sec. 4.1.2 and 4.2.1 in the sequel. Lastly, there
is a set of non-overlapping regions of interest gn Ă W , n “
1, ¨ ¨ ¨ , N within the freespace. With slight abuse of notation,
the associated atomic propositions are also denoted by G “

tgnu, standing for “the robot is within region gn, i.e., q P gn”.
The desired task is specified as a LTL formula φ over G, i.e.,
φ “ LTLpGq by the syntax described in Sec. 2.2. Given the
robot trajectory q, its trace is given by the sequence of regions
over time, i.e., ωpqq “ gℓ1gℓ2 ¨ ¨ ¨ , where gℓk P G and qptkq P
gℓk , for some time instants 0 ď tk ď tk`1 and k P Z.

Thus, the objective is to design an online control and plan-
ning strategy for system (3) such that starting from an initial
pose pq0, θ0q, the trace of the resulting trajectory ωpqq fulfills
the given task φ, while avoiding collision with all obstacles.

4. Proposed Solution

As illustrated in Fig. 1, the proposed solution is a hybrid
control framework as two-layer harmonic trees (HT) that com-
bines harmonic potentials for navigation and oriented search
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trees for planning. Initially, the automaton-guided search trees
and the orientation-aware harmonic potentials are constructed
in a dependent manner given the partially-known workspace.
Then, as the robot explores more obstacles, an online adapta-
tion scheme is proposed to revise the search tree and update the
harmonic potentials recrusively and simultaneously.

4.1. Initial Synthesis

4.1.1. Two-layer and Automaton-guided Harmonic Trees
As described in Sec. 2.2, the NBA associated with φ is

given by Aφ “ pS, Σ, δ, pS0, SF qq, which captures all po-
tential traces that satisfy the task. To begin with, the initial nav-
igation map is constructed as a weighted and fully-connected
graph G fi p pG, E, d, pg0, θ0qq, where: (i) pG “ G ˆ Θ is the
set of regions of interest plus a set of orientations Θ Ă r0, 2πq;
(ii) E Ă pG ˆ pG is the set of transitions; (iii) d : E Ñ R`

is the cost function, which is initialized as dppg, θq, pg1, θ1qq fi

}g´g1}2`w|θ´θ
1|, @pg, θq, pg1, θ1q P pG and parameterw ą 0;

and pg0, θ0q is the initial pose. Note that E is initialized as
fully-connected since the actual feasibility and cost can only be
determined after the associated controllers are constructed.

Given G and Aφ, the standard model-checking procedure is
followed to find the task plan. Namely, their synchronized prod-
uct is built as pA fi G ˆAφ “ ppS, pδ, pd, ppS0, pSF qq, where pS “
pG ˆ S; pS0, pSF Ă pS are the sets of initial and accepting states;
pδ Ă pS ˆ pS that pxg, sy, xg1, s1yq P pδ if pg, g1q P E and s1 P

δps, tguq; pdpxg, sy, xg1, s1yq “ dpg, g1q, @pxg, sy, xg1, s1yq P pδ.
Note that the product pA is still a Büchi automaton, of which the
accepting run satisfies the prefix-suffix structure. Namely, con-
sider the following run of pA: pS “ ps1ps2 ¨ ¨ ¨ psLppsL`1psL`2 ¨ ¨ ¨

psL`Hq
ω , which an infinite sequence of pS with ps1 ¨ ¨ ¨ psL being

the prefix and psL`1 ¨ ¨ ¨ psL`H being the suffix repeated infinitely
often; ps1 P pS0 and psL`1 P pSF ; and L,H ě 1. A nested Di-
jkstra algorithm is used to find the best pair of initial and ac-
cepting states pps‹

0, ps
‹
F q. Thus, the optimal plan given the initial

environment is obtained by projecting pS onto pG, i.e.,

pg “ pg1pg2 ¨ ¨ ¨ pgLppgL`1pgL`2 ¨ ¨ ¨ pgL`Hq
ω, (6)

where pgℓ “ psℓ| pG are the regions. More algorithmic details can
be found in Guo & Dimarogonas (2015).

To avoid oscillation or jitters and long detours as mentioned
in Sec. 1.1, the structure of oriented harmonic trees (HT) is
proposed. More specifically, the oriented HT associated with
ppgℓ, pgℓ`1q is a tree structure defined by a 4-tuple:

T
pgℓÑpgℓ`1

fi
`

V, B, γ, pν0, νGq
˘

, (7)

where V Ă W ˆ p´π, πs is the set of vertices; B Ă V ˆ V
is the set of edges; γ : B Ñ Rě0 returns the edge cost to
be estimated; ν0 “ pgℓ and νG “ pgℓ`1 are the initial and target
poses. The goal is to find a sequence of vertices in T as the path
from ν0 to νG. Initially, V “ tν0, νGu and B “ H. Then, the
set of vertices can be generated in various ways, e.g., the vis-
ibility graph from Huang & Chung (2004) or sampling-based
methods from LaValle (2006). It is worth mentioning that these

Figure 5: Estimated squircles (in blue dashed lines) under different curvatures κ
and different distributions of (a) accurate or (b) noisy measurements.

vertices should be augmented by orientations if not already. Af-
terwards, any vertex is connected to all vertices within its free
vicinity with an estimated cost. Thus, given the weighted and
directed tree T

pgℓÑpgℓ`1
, the shortest path from ν0 to νG is deter-

mined by A‹ from LaValle (2006), denoted by:

P
pgℓÑpgℓ`1

fi ν0ν1 ¨ ¨ ¨ νN´1νG, (8)

where νn P V and pνn, νn`1q P B, @n P r0, N ´ 1s. In other
words, each vertex along the path serves as the intermediate
waypoints to navigate from region pgℓ to pgℓ`1.

4.1.2. Orientation-aware Harmonic Potentials
As explained in (5), a 2D point cloud is returned that con-

sists of points on any obstacle surface within the sensing range.
More specifically, denoted by Dt “ tdju the set of 2D points
that are already transformed from the local coordinate to global
coordinate where dj P BW . To begin with, these data points
are divided into K clusters representing K separate obstacles,
i.e., Dt “ tDt,ku, by e.g., checking the relative distance and
change of curvature between consecutive points. The exact
thresholds would depend on the specification of the Lidar scan-
ner. Then, each cluster is fitted to the model of squircles in (4)
to estimate the curvature, translation, scaling and rotation, via
general nonlinear optimization solvers, e.g., Gavin (2019). As
shown in Fig. 5, the estimation accuracy relies heavily on the
actual parameters of the model in (4), the noise level and the
distribution of the measurements. More specifically, the estima-
tion is rather accurate when the curvature κ is close to 0 such as
circles; however becomes inaccurate or uncertain when when κ
is close to 1 such as rectangles and when the data points are few
or noisy. In the later case, either a pre-stored database of com-
mon obstacles and their shapes can be retrieved based on object
recognition as adopted in Vasilopoulos et al. (2022), or an op-
timistic strategy that chooses the one with the minimum area
among the candidates. For the rest of this section, it is assumed
that the estimation is accurate by Assumption 2. Relaxation of
this assumption via online adjustment as more measurements
are gathered is discussed in Sec. 4.2.1.

Consequently, denote by tÔtu the collection of obstacles
detected and fitted at time t ě 0. An example is shown in Fig. 3,
where an initial workspace model is constructed given the sen-
sory data at t “ 0. Given the set of squircle obstacles tÔ0u, the
initial navigation function φNFpqq is constructed by three major
diffeomorphic transformations: (i) ΦFÑS transforms the forest
of stars into a star world via “purging”; (ii) ΦSÑM transforms
the star world into its model sphere world; and (iii) ΦMÑP
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transforms the sphere world into a point world. The complete
navigation function for the original workspace is given by:

φNFpqq “ σ ˝ ϕP ˝ ΦMÑP ˝ ΦSÑM ˝ ΦFÑSpqq, (9)

where σ ˝ ϕP is defined in (2); and the transformation ΦMÑP
is given in (1). The remaining part of this section describes the
two essential and nontrivial transformations ΦSÑM and ΦFÑS .

Star-to-Sphere Transformation. The star world S has an
outer boundary of squircle workspace O0 “ tq P R2|β0pqq ď
0u and M inner squircle obstacles Oi “ tq P R2|βipqq ď 0u,
where βipqq is the obstacle function defined in (4), for i “
0, 1, ¨ ¨ ¨ ,M . The star-to-sphere transformation is constructed
by the ray scaling process from Rimon (1990), as shown in
Fig. 4. To begin with, define the following scaling factor:

v0pqq fi ρ0
1´ β0pqq

||q ´ c0||
, vipqq fi ρi

1` βipqq

||q ´ ci||
, (10)

where ci is the geometric center of the associated squircle and ρi
is the radius of the transformed sphere. Moreover, the translated
scaling map Ti for each obstacle Oi is defined by:

Tipqq fi vipqq pq ´ ciq ` ci, (11)

for i “ 0, 1, ¨ ¨ ¨ ,M . Consequently, the transformation from
star world S to its model sphere world M is given by:

ΦSÑM fi

´

1´
M
ÿ

i“0

σipqq
¯

idpqq `
M
ÿ

i“0

σipqqTipqq, (12)

where σipqq fi
γGpqqβipqq

γGpqqβipqq`λβipqq
is the analytic switch for the

workspace boundary and obstacles; idpqq is the identity func-
tion; λ ą 0 is a parameter; γGpqq fi }q ´ qG}

2 is the distance-
to-goal; and βipqq fi

śM
j“0,j‰i βjpqq is the omitted product.

Leaf-Purging Transformation. As described in Loizou &
Rimon (2022); Li & Tanner (2018); Rimon (1990), besides dis-
jointed star worlds, it is essential to consider the workspace
formed by unions of overlapping stars, called the forest of stars.
It consists of several disjointed clusters of obstacles as trees of
stars, which in turn is a finite union of overlapping star obstacles
whose adjacency graph is a tree. Since overlapping stars can not
be transformed directly as a whole obstacle, each tree has to be
transformed via successively purging its leaves. Specifically, a
forest of stars is described by F “ W0z

ŤN
n“1 Tn, where Tn is

the n-th tree of stars among the N trees. Each tree of stars has
a unique root, and its obstacles are arranged in a parent-child
relationship. An example is shown in Fig. 6, where the trees
have different depths according to the level of leaves in the tree.
Without loss of generality, denote by dn the depth of the tree Tn
and L the set of indices for all leaf obstacles in all trees, and
by I the set of indices associated with all obstacles within F .
Furthermore, denote by Oi fi tq P R2 : βipqq ď 0u the leaf
obstacles, where βipqq is the obstacle function defined in (4).
The parent of obstacle Oi is denoted by Oi‹ , of which the cen-
ters are chosen to be the same and denoted by pi P Oi

Ş

Oi‹ .
Then, the diffeomorphic transformation from the forest of stars

Figure 6: A forest world F with overlapping squircles (Left), which consists
of 5 trees of stars Ti with different depths from the root to the leaves (Right).

F to the star world S is constructed via the successive purging
transformations for each tree as follows:

ΦFÑSpqq fi ΦN ˝ ¨ ¨ ¨Φ2 ˝ Φ1pqq, (13)

where Φnpqq is the purging transformation for the n-th tree of
stars, where n “ 1, ¨ ¨ ¨ , N . It has the following format:

Φnpqq fi fn,1 ˝ fn,2 ¨ ¨ ¨ ˝ fn,dnpqq, (14)

where fn,ipqq is the purging transformation for the i-th leaf ob-
stacle in the n-th tree for i “ 1, ¨ ¨ ¨ , dn, which is constructed
by the ray-scaling process to purge the leaf obstacle into its par-
ent as shown in Fig 4. Due to the specific representation of the
squircle, the length of rays from the common center pi to the
boundary of the parent obstacle Oi‹ , is calculated by:

ρ̃i‹pq̂q fi
1

}Ã´1
i‹ q̂}

ρsc

˜

Ã´1
i‹ q̂

}Ã´1
i‹ q̂}

¸

, (15)

where q̂ “ q´pi

}q´pi}
is the normalized vector of q ´ pi; ρscp¨q

is the length of the rays for unit squircle drived from (4); and
Ãi‹ P R2ˆ2 is a piecewise scaling matrix tailored for the parent
squircle which is diagonal with the following entries:

ãℓi‹pq̂q fi aℓi‹ ` sgnpq̂⊺eℓqrci‹ ´ pis
⊺eℓ, (16)

for ℓ “ 1, 2, where aℓi‹ are the entries of the diagonal scaling
matrix Ai‹ of the parent squircle; ci‹ is the geometric center of
the parent obstacle; and eℓ are two base vectors for ℓ “ 1, 2.

Lemma 1. The length of rays ρ̃i‹pqq is smooth in W0zOi

Ť

Oi‹ .

Proof. The derivative of ρ̃i‹pqq is given by the chain rule:

∇ρ̃i‹pqq “
}q ´ pi}

2I´ pq ´ piqpq ´ piq
⊺

}q ´ pi}3
∇ρ̃i‹pq̂q,

where the derivative of ρ̃i‹pq̂q boils down to computing the
derivatives of ρscpqq and Zpq̂q “ Ã´1

i‹ q̂ in (15). The smooth-
ness of ρscpqq and its derivative can be obtained directly from (4).
Since ∇aℓi‹pq̂q “ ∇paℓi‹ ` signpq̂⊺eℓqrqi‹ ´ pis

⊺eℓq “ 0, for
ℓ “ 1, 2, the derivative of Zpq̂q is calculated and simplified as:

∇Zpq̂q “ Ã´1
i‹ I´ Ã´1

i‹ r∇Ãi‹sÃ´1
i‹ q̂ “ Ã´1

i‹ .

Besides, as }q´pi} ą 0 holds for every point q PW0zOi

Ť

Oi‹ ,
the derivative of ρ̃i‹pqq exists and is well-defined. On the other
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hand, ∇ρ̃i‹pqq is continuous since its compositions are all con-
tinuous. Therefore, ρ̃i‹pqq is at least C1 smooth. Additionally,
higher-order smoothness can be proven by the same procedure,
which is omitted here.

Given the length of rays ρ̃i‹pqq, the star deforming factor
for each leaf obstacle Oi is calculated by:

vipqq “ ρ̃i‹pqq
1` βipqqκ̃ipqq

}q ´ pi}
, (17)

where κ̃ipqq is defined by: κ̃ipqq fi βi‹pqq ` pβipqq ´ 2Eiq `
a

β2
i‹pqq ` ppβipqq ´ 2Eiqq

2. The parameter Ei ą 0 is a geo-
metric constant satisfying that Oip2Eiq

Ş

Ojp2Ejq “ H and
γ´1
G pr0, 2EGsq

Ş

Oip2Eiq “ H with EG ą 0 being a geomet-
ric constant and Oipxq fi tq P R2|βipqq ď xu with x ą 0, for
i, j P I with i ‰ j and i, j ‰ j‹, where Oi‹ and Oj‹ are the
parent obstacles of Oi and Oj in the tree, respectively. Further-
more, the translated scaling map Ti for each obstacle Oi with
the common center pi is defined by:

Tipqq fi vipqq pq ´ piq ` pi. (18)

Therefore, the purging transformation fn,ipqq for the i-th leaf
obstacle Oi in the n-th tree is defined by:

fn,ipqq fi
`

1´ σipq, ξiq
˘

idpqq ` σipq, ξiqTipqq, (19)

where σipq, ξiq fi
γGpqqβipqq

γGpqqβipqq`ξiβipqq
is the analytic switch; ξi ą

0 is a positive parameter; γGpqq is the same as in (12); and βipqq
is the omitted product defined by:

βipqq fi

´

ź

jPIzti,i‹u

βjpqq
¯´

ź

jPLztiu

βjpqq
¯

β̃ipqq,

where β̃ipqq is defined by: β̃ipqq fi βi‹pqq ` p2Ei ´ βipqqq `
a

β2
i‹pqq ` p2Ei ´ βipqqq2. The positive geometric constantEi

satisfies the same condition as previously described.

Remark 1. The original purging method proposed in Rimon
(1990) deals with overlapping obstacles via Boolean combina-
tions and applies only to planar and parabolic obstacles. The
work in Li & Tanner (2018) proposes a simpler method for
computing the ray scaling transformations using varying ray
lengths. However, these approaches purge all the leaves at once,
which is not applicable to the dynamic scenarios where the ob-
stacles are added to the workspace one by one. Thus, a novel
method is proposed in (19) that purges the leafs one by one. ■

Lemma 2. Given a workspace W containing N tree-of-stars
with different depth dn ě 0, for n “ 1, ¨ ¨ ¨N , the complete
harmonic potential function φNFpqq in (9) is a valid navigation
function for the workspace W , if the parameters K ą N and
µ ě 1 hold in (2); λ ą Λ for a positive number Λ ą 0; and
ξi ą Ξi for some positive numbers Ξi ą 0, for i “ 0, ¨ ¨ ¨ , dn.

Proof. Similar statements have been proven in Rousseas et al.
(2021); Filippidis & Kyriakopoulos (2011); Loizou & Rimon
(2022), thus detailed proofs are omitted here and refer the read-
ers to e.g., Theorem 1 of Loizou & Rimon (2022), Theorem

2 in Li & Tanner (2018) and Proposition 5 of Loizou (2017).
Briefly speaking, it is shown that the transformation ΦSÑM
ΦFÑS are diffeomorphic as long as λ ą Λ and ξi ą Ξi for
some sufficient large numbers Λ and Ξi, and the final potential
function φNFpqq has a unique global minimum at the goal qG
and more importantly, a set of isolated saddle points of measure
zero if K ą N and µ ě 1 hold. Since the purging process pro-
posed in (19) is novel, this proof mainly shows that fn,ipqq still
satisfies the diffeomorphic conditions: (i) the Jacobian of fn,ipqq
is nonsingular; (ii) fn,ipqq is a bijection on the boundary. To be-
gin with, since ρ̃i‹pqq is proven to be smooth in Lemma 1, the
Jacobian of fn,i exists and is given by:

Jfn,i
“σipq ´ piq∇v⊺i ` pvi ´ 1qpq ´ piq∇σ⊺

i

` p1´ σiqI` σiviI.

Similar to Lemmas 7 and 8 in Li & Tanner (2018), it can be
shown that there exists a positive constant Ξi, such that if ξi ą
Ξi, Jfn,i

is nonsingular within the set near Oi, denoted by
Oipϵiq “ tq P R2|βi ď ϵiu, and the set away from Oi, denoted
by Apϵiq “ tq P R2|βi ě ϵiu, for any ϵi ą 0. In addition, it
remains to show the injectivity and surjectivity of fn,ipqq. On
the boundary of Oi, it holds that fn,ipqq|qPBOi

“
ρ̃i‹ pqq

}q´pi}
pq ´

piq ` pi. Assume that there exists two points q, q1 P BOi such
that fn,ipqq “ fn,ipq

1q, it can be derived that q´ pi and q1 ´ pi
are on the same ray, yielding to the contradiction that q, q1 are
the same point. Thus, fn,ipqq is injective on BOi. On the other
hand, since it has been shown that the Jacobian of fn,ipqq is
nonsingular if ξi ą Ξi, fn,ipqq is a local homeomorphism ac-
cording to the Inverse Function Theorem. Since a local homeo-
morphism from a compact space into a connected one is surjec-
tive, it follows that fn,ipqq is a bijection on the boundary.

The derived potential fields in (9) can be used to drive holo-
nomic robots from any initial point to the given goal point qG,
e.g., by following the negated gradient in Rousseas et al. (2021,
2022b); Filippidis & Kyriakopoulos (2011); Loizou & Rimon
(2022). However, the final orientation of the robot at the des-
tination can not be controlled, yielding it impractical for the
oriented path P

pgℓÑpgℓ`1
in (8). Thus, an additional two-step

rotation is proposed for the potential fields above.
Two-step Rotation to Harmonic Potentials: As shown in

Fig. 7, the main idea is to design a two-step rotation transforma-
tion to the harmonic potentials, such that a “dipole-like” field is
formed near the goal point with the desired orientation. More
specifically, the transformation is given by:

Γpqq fi R
`

θ2pqq
˘

R
`

θ1pqq
˘

, (20)

where Rpθq is the standard rotation matrix, i.e., Rpθq “ rcos θ,
´ sin θ; sin θ, cos θs for θ P r0,´πq; θ1pqq is the angle to be
rotated such that the direction of the transformed potential is
aligned with the direction from qG to q near the goal, i.e.,

θ1pqq fi sdpqqδθpqq ` sgn
`

δθpqq
˘

r1´ sdpqqsδc, (21)

where δθpqq fi θq´qG ´ θ∇φNFpqq is the relative angle between

q ´ qG and ∇φNFpqq; δc fi 2π; sdpqq fi exp pτ ´ τµ2

pµ´φNFpqqq2
q
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Figure 7: Robot trajectories from different initial poses (filled stars) to the same
goal pose (orange triangle), under the original potential fields ´∇φNFpqq (Top
Left) and the oriented potential fields Υpqq (Top Right) via the proposed con-
trol law in (24). Bottom: The robot orientation θ converges to the desired value
(dashed line), along these trajectories.

is a smooth switch function that is “on” near the destination and
“off” near the obstacle, with τ P p0, 1q being a design param-
eter and µ being the maximum value of φNFpqq. Moreover, the
variable θ2pqq is the angle to be rotated, such that the transi-
tional potential fields mimic a point-dipole field, i.e.,

θ2pq̌q fi sdpq̌qδ
1
θpq̌q ` sgn

`

δ1
θpq̌q

˘

r1´ sdpq̌qsδ
1
c ` δ

1
c, (22)

where q̌ is the transformed coordinate of q in the new coordi-
nate system, where the goal point qG is the origin and the de-
sired orientation θG is the positive direction of the x-axis, i.e.,
q̌ fi R´1pθGqpq ´ qGq, where RpθGq is the rotation matrix as-
sociated with the goal angle θG; δ1

θpq̌q fi θq̌ is the angle of the
vector q̌; δ1

c fi π; sdp¨q is the same as in (21).

Definition 3. The oriented harmonic potential fields are de-
fined as the fields obtained by transforming the original poten-
tial fields through a two-step rotation in (20), denoted by:

Υpqq fi ´Γpqq∇φNFpqq, (23)

where ∇φNFpqq is the gradient of the original potentials. ■

Given the oriented harmonic potential fields, the integral
curves of Υpqq correspond to the trajectories ξ̄ptq of the au-
tonomous system described by ordinary differential equations:
d
d t ξ̄ptq “ Υpξ̄ptqq P R2, with initial value ξ̄pt0q “ q0. The con-
vergence property of the integral curves is proven as follows.

Lemma 3. All integral curves of Υpqq in (23) converge to qG
with the desired orientation θG asymptotically, with no collision
with any obstacles, as long as the conditions in Lemma 2 hold.

Proof. To begin with, it is proven in Lemma 2 that φNFpqq is
a valid navigation function, it holds that φNFpqq “ µ on the
boundary of the workspace BW . Thus, the switch functions
sdpqq “ 1 hold both in (21) and (22), and θ1pqq “ θ2pqq “ π
holds. In this case, the rotation matrices Rpθ1q “ Rpθ2q are
both identity matrices, thus Γpqq “ I is an identical transfor-
mation and the transformed field coincides with the original

Figure 8: Illustration of the smooth transition strategy in (25) when the agent
switches from one intermediate waypoint to another. The switch function ηϵ is
activated once the current waypoint is reached with a margin ϵ. The resulting
trajectory and control inputs are all smooth.

potential field, i.e., ´∇φNFpqq. Furthermore, since the negated
gradient points away from the boundary BW , the transformed
field inherits the property of collision avoidance.

Secondly, the transformation Γpqq is nonsingular as both
Rpθ1q and Rpθ2q are non-singular. Thus, all critical points
of φNFpqq, including the global minimum qG and saddle points,
retain their properties after the transformation. In other words,
the saddle points of φNFpqq remain to be non-degenerate with
an attraction region of measure zero. Since any integral curve
in a closed compact set W is bounded, there must be a limit
set inside W to which the integral curves converge. Lemma 4
of Valbuena & Tanner (2012) states that no such limit cycles ex-
ist if there are no additional attractors other than qG. Therefore,
the goal point qG is the only attractive component of the limit
set within W , i.e., the integral curves of Υpqq converge to qG.

Lastly, it remains to be shown that the asymptotic conver-
gence to qG is achieved with the desired orientation θG. Clearly,
when q approaches qG, the switch function sdpq, τq approaches 1,
while θ1pqq, θ2pqq approach δθpqq, δ1

θpqq ` π, respectively. For
brevity, let θ1pqq “ δθpqq and θ2pqq “ δ1

θpqq ` π. Therefore,
the transformed potential field Υpqq is simplified as:

Υpqq “

„

}∇φNFpqq} cos
`

δ1
θpqq ` θq´qG

˘

}∇φNFpqq} sin
`

δ1
θpqq ` θq´qG

˘

ȷ

,

where δ1
θpqq P p´π, πs is defined in (22). Then, the inner

product of Υpqq and qG ´ q is given by: xΥpqq, qG ´ qy “
´}∇φNFpqq}}qG ´ q} cos

`

δ1
θpqq

˘

. It should be noted that the
integral curves can only converge to the qG in the direction of
steepest descent, i.e., from the region where δ1

θpqq approaches π.
Since δ1

θpqq “ θq̌ and q̌ “ R´1pθGqpq´qGq, δ1
θpqq approaches π

implies that θqG´q approaches θG. Thus, the integral curves
converge to qG along the desired orientation θG.

4.1.3. Smooth Harmonic-Tracking Controller
Given the rotated potentials in (23), a nonlinear feedback

controller can be used for non-holonomic robots in (3) to track
its rotated and negated gradient. More specifically, the linear
and angular velocity is set as follows:

υpq, qGq “ kυ tanh p}q ´ qG}q ; (24a)
ωpθ, θGq “ ´kω pθ ´ θΥq ` υ r∇θΥs⊺ JΥ Θ, (24b)

where q, θ are the robot pose and orientation; kυ, kω ą 0 are
controller gains; θΥ is the direction of vector Υ fi rΥx, Υys

⊺;
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Figure 9: Left: The difference between the estimated cost by (26) and the
measured cost under different weights w, for different choice of the distance
dpqn, qn`1q. Right: The difference actual with 40 samples, when w “

r0.17, 0.23s⊺ and d “ 0.5.

∇θΥ “ r B θΥ
B Υx

, B θΥ
B Υy

s⊺; JΥ being the 2ˆ2 Jacobian matrix of Υ,

whose entries are rJΥsij “ BΥi

Bqj
, for i, j P t1, 2u; and Θ fi

rcos θ, sin θs⊺. The main idea is to decompose the control ob-
jective into two sub-objectives: (i) the robot orientation is reg-
ulated sufficiently fast to θΥ via (24b); (ii) the robot velocity
along this direction is adjusted to reach qG via (24a). The
control gains kυ, kω should be chosen according to the desired
safety margin and minimum distance among the obstacles.

Proposition 1. Under the control law (24), the robot in (3) con-
verges to the goal qG with orientation θG asymptotically, from
almost all initial poses in the workspace W , as long as the con-
ditions in Lemma 2 hold.

Proof. (Sketch) As discussed, the robot system (3) under con-
trol law (24) can be decomposed into two subsystems via singu-
lar perturbation based on Khalil (2002). The fast subsystem is
equivalent to ω “ ´kω pθ ´ θΥq ` 9θΥ, which ensures a global
exponential convergence of θ to the rotated fields θΥ. Secondly,
the slow subsystem is given by 9q “ υ Υ

}Υ}
. The robot trajectory

corresponds one integral curve of the vector field Υpqq. As al-
ready proven in Lemma 2 that the integral curves of the vector
fields Υpqq converge to qG with orientation θG, the slow subsys-
tem converges to the goal pose with the desired orientation.

More importantly, since the robot needs to switch along a
sequence of waypoints in its path P

pgℓÑpgℓ`1
from (8), a smooth

transition between the intermediate waypoints is crucial to en-
sure both smooth trajectories and control inputs. As shown in
Fig. 8, the switching strategy from νn “ pqn, θnq to νn`1 “

pqn`1, θn`1q in P
pgℓÑpgℓ`1

is given by:

u “ upq, qnq ` ηε pγnpqqq
`

upq, qn`1q ´ upq, qnq
˘

, (25)

where u stands for inputs υ and ω; γnpqq fi }q ´ qn}; and
ηεpxq fi 1

2

`

1 ` tanhpks pε ´ γnpqqqq
˘

is the smooth switch
function, with ks ą 0 being a positive gain, and ε ą 0 the
switching margin around qn, which can be tuned according to
how dense the obstacles are located to ensure safety during tran-
sition. Namely, a smaller ε should be chosen when obstacles are
close to the switching point. Last but not least, the control cost
under the proposed control law in (24) to drive the robot from
waypoint νn to νn`1 is estimated by:

γpνn, νn`1q fi dpqn, qn`1q `wQ⊺
Υpθn, θn`1q, (26)

where the first part dpqn, qn`1q “ }qn ´ qn`1} measures the
straight-line distance; the second part approximates the rotation

Figure 10: Illustration of how intermediate waypoints can reduce oscillations
and long detours, under different initial poses (solid stars) and goal poses (or-
ange triangles). (i) Oscillations appear as the robot traverses narrow passage
in (a) or near the obstacle boundary in (c). Intermediate waypoints (blue dots)
are introduced in (b) and (d), yielding smooth trajectories. (ii) Divergent tra-
jectories appear for two close-by initial poses (red and green stars) due to their
proximity to the saddle point (violet dot) in (e) and (g). Intermediate waypoints
(blue dots) are introduced in (f) and (h), yielding nearly identical trajectories.

cost: (i) w fi rw1, w2s are the weighting parameters withw1, w2

ą 0; (ii) QΥpθn, θn`1q fi r|θΥpqnq ´ θn|, |θqn`1´qn ´ θn`1|s,
where the first item estimates the rotation cost between robot
orientation and the rotated gradient at the starting pose; the sec-
ond item estimates the steering cost between the vector qn`1 ´

qn and goal orientation. Consequently, it can be used to com-
pute the edge cost of the HT T

pgℓÑpgℓ`1
in (7), yielding a more

accurate estimate of the navigation cost from pgℓ to pgℓ`1. In
turn, the actual cost within the navigation map G is given by:
dppg, pg1q “

řN´1
n“0 γpνn, νn`1q, where P

pgÑpg1 “ ν0ν1 ¨ ¨ ¨ νN is
the shortest path from pg to pg1 in the associated HT T

pgÑpg1 .

Remark 2. The control cost in (26) is estimated through a
weighted combination of the translation cost and the steering
cost. As shown in Fig. 9, this estimation approaches the ac-
tual measured cost when the distance between consecutive way-
points are selected properly. ■

4.1.4. Hybrid Execution of the Initial Plan
The initial plan pg “ pg1pg2 ¨ ¨ ¨ pgLppgL`1pgL`2 ¨ ¨ ¨ pgL`Hq

ω in
(6) can be executed via the following hybrid strategy: (i) staring
from ℓ “ 1, determine the next goal region pgℓ`1; (ii) construct
the HT as T

pgℓÑpgℓ`1
and determine the shortest path P

pgℓÑpgℓ`1
“

ν0 ¨ ¨ ¨ νN´1νG in (8); (iii) starting from the first vertex n “ 0,
once the robot enters the small vicinity of vertex νn, it switches
to the next mode of traversing the subsequent intermediate edge
pνn, νn`1q. The associated controller (24) is activated with the
goal pose νn`1 and potential ΥνnÑνn`1

pqq. The controller re-
mains active until the robot enters the small vicinity of νn`1.
This execution repeats until the vertex νG, i.e., pgℓ`1, is reached,
after which the index ℓ is incremented by 1 and returns to step
(i). This procedure could be repeated until the last state of plan
suffix ŝL`H is reached, if the environment remains static. How-
ever, since the environment is only partially known, more ob-
stacles would be detected during execution and added to the en-
vironment model. which might invalidate not only the current
navigation map but also the underlying harmonic potentials.

Remark 3. The design of intermediate waypoints between sub-
tasks can alleviate certain limitations of the classic navigation
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Figure 11: (a) Estimation of the obstacles (in blue dashed lines) in Sec. 4.2.1,
which includes clustering, fitting and decomposition; (b) Online adjustment
as more measurements (pink circles) are gathered. The cluster is ultimately
decomposed into three segments, which are fitted to three squircles when the
error exceeds the desired threshold for fitting a single squircle.

functions from Koditschek (1987); Rimon (1990) for robotic
navigation. As shown in Fig. 10, when the robotic system is
geometrically and dynamically constrained, it can not follow
the negated gradient perfectly. Consequently, oscillations ap-
pear along narrow passages and close to boundary of obstacles,
where the underlying gradient changes directions abruptly. As
also emphasized in Rimon (1990); Loizou & Rimon (2022),
the phenomenon of “vanishing” valleys and the resulting os-
cillations often occur when the parameter λ is set too large.
Moreover, when two initial poses are located close to saddle
points, the resulting trajectories can be diverging in opposite di-
rections. To overcome these issues, the introduced intermediate
waypoints can decompose the long path into shorter segments
of which the associated potentials are often easier to track. ■

4.2. Online Adaptation
As the robot detects more obstacles during execution, the

estimated obstacles, the HTs and the underlying harmonic po-
tentials are all updated as follows.

4.2.1. Adaptive Obstacle Estimation
As discussed in Sec. 4.1.2 and shown in Fig. 5, the estima-

tion of squircle obstacles can be inaccurate and uncertain when
the measurements are noisy and partial. Instead of simply re-
lying on Assumption 2, the obstacle estimation can be adapted
online as more measurements are gathered, as shown in Fig. 11.
In particular, this process involves three steps that are executed
at a desired frequency: (i) clustering the measurements to iden-
tify potential obstacle regions; (ii) fitting the geometric models
to these clusters for improved accuracy; and (iii) decomposing
the fitted models to refine the obstacle representation.

More specifically, Clustering: Given the set of measure-
ments Dt at the current time step t, the data points are clus-
tered into K clusters Dt “ tDt,1, ¨ ¨ ¨ ,Dt,Ku by their rela-
tive distances and curvature. Fitting: The data points in each
cluster Dt,k are then fitted to a squircle Ôt,k using nonlinear
least squares methods Gavin (2019), @k “ 1, ¨ ¨ ¨ ,K. If the fit-
ting error Ek falls below a pre-defined threshold, the estimated
model Ôt,k is accepted, by which either a new squircle is added
to the forest world or the geometric parameters of an existing
squircle is updated. Since the fitting process is nonlinear, multi-
ple estimated models with comparable fitting errors may exist.

Figure 12: Iterative update of the harmonic potentials as new obstacles (red
lines) are added: an independent obstacle for k “ 3 (Left); and an overlapping
obstacle for k “ 4 (Right).

In such cases, the model that is most conservative is selected.
For instance, if only one side of a rectangular squircle is de-
tected, a minimum width or height is assumed for the missing
side, as shown in Fig 11. Decomposition: If the fitting error
Ek is larger than the threshold, it indicates that this cluster Dt,k

might not correspond to a single squircle and should be decom-
posed into multiple segments Dt,k “ tSt,1, ¨ ¨ ¨ ,St,Lu, each of
which is then fitted to a squircle model Ôt,ℓ, @ℓ “ 1, ¨ ¨ ¨ , L.
Namely, the curvature of each point pj P Dt,k is captured lo-
cally based on its neighboring points. Then, the cluster Dt,k

is divided into several segments based on the changes in cur-
vatures between consecutive points. Moreover, if the estimated
squircle overlaps with the robot or the regions of interest, the
cluster should also be further decomposed to avoid these re-
gions. This process is repeated until all segments are fitted to
squircles with the accepted accuracy.

More technical details can be found in the supplementary
files in Wang (2023). Some illustrations are shown in Fig. 11,
with more numerical examples provided in Sec. 5. Via this
adaptive scheme, both the obstacle parameters and the structure
of the forest world can be updated online.

4.2.2. Incremental Update of Harmonic Potentials
The classic methods as proposed in Loizou & Rimon (2022);

Li & Tanner (2018); Rimon (1990) construct the underlying
navigation function at once by taking into account all obstacles
in the workspace. However, this means that the whole process
has to be repeated from scratch each time an additional obstacle
is added. A more intuitive approach would be to incrementally
update different parts of the computation process by storing and
re-using some of the intermediate results. Consider the follow-
ing two cases as shown in Fig. 12: (i) independent stars are
added to existing world of stars; and (ii) overlapping stars are
added to existing forests of stars.

Independent Stars: To begin with, consider the simple
case that a set of non-overlapping star obstacles, denoted by Ok,
k “ 1, ¨ ¨ ¨ ,M , is added to an empty workspace W “ O0 in
sequence. As discussed in Sec. 4.1.2, the star-to-sphere trans-
formation is constructed via the translated scaling map in (11).

Definition 4. The online omitted product β
k

i pqq of star-to-sphere
transformation for obstacle Oi after adding the k-th obstacle,
for i “ 0, 1, ¨ ¨ ¨ , k and for k “ 1, ¨ ¨ ¨ ,M , is a real-valued func-
tion defined for the star world S as: β

k

i pqq fi
śk

j“0,j‰i βjpqq,
where βjpqq is the obstacle function defined in (4). ■
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Definition 5. The online analytic switch ski pqq of star-to-sphere
transformation for obstacle Oi, after adding the k-th obstacle,
for i “ 0, 1, ¨ ¨ ¨ , k and for k “ 1, ¨ ¨ ¨ ,M , is a real-valued
function defined for a star world S as:

ski pqq fi
γGpqqβ

k

i pqq

λkβipqq ` γGpqqβ
k

i pqq
,

where γGpqq is the distance-to-goal function; λk is a positive
parameter associated with k; β

k

i pqq is the online omitted prod-
uct; and βipqq is the obstacle function defined in (4). ■

Then, the transformation from the star world to the sphere
world after adding the k-th star is restated as:

Φk
SÑMpqq fi idpqq `

k
ÿ

i“0

ski pqq
`

vipqq ´ 1
˘

pq ´ qiq, (27)

where ski pqq is the online analytic switch associated with both i
and k; vipqq is the scaling factor defined in (10); and qi is the
geometric center of the obstacle Oi, for i “ 0, 1, ¨ ¨ ¨ , k. More-
over, the following intermediate variables are defined:

Fk
i pqq fi ski pqq ripqq, (28)

where ri fi
`

vipqq´ 1
˘

pq´ qiq. Consequently, the transforma-
tion in (27) is adjusted to: Φk

SÑMpqq “ idpqq `
řk

i“0 F
k
i pqq.

Note that for k “ 0, the function F0
0pqq for the empty workspace

is computed using the initial transformation via (12). After-
wards, each time a new pk ` 1q-th obstacle is added, Fk

i pqq
should be updated to Fk`1

i pqq, @i “ 0, 1, ¨ ¨ ¨ , k, and Fk`1
k`1pqq

for the added obstacle should also be constructed. To compute
these variables efficiently, a recursive method is proposed here.
For the ease of notation, define the multi-variate auxiliary func-
tion useful for the recursive computation as follows:

ΨapF, r, r̃, αq fi
}F}

α }r} ` p1´ αq }F}
r̃, (29)

where F, r, r̃ are vectors; α P p0, 1q is a scalar variable; and
α }r}`p1´αq }F} ‰ 0. Then, the function Fk`1

0 pqq associated
with the workspace is updated from Fk

0pqq as follows:

Fk`1
0 pqq “ Ψa

`

Fk
0pqq, r0pqq, r0pqq, α

kpqq
˘

, (30)

where r0pqq is defined in (28) for the workspace; the variable
αkpqq fi λk`1{

`

λk βk`1pqq
˘

; λk and λk`1 are positive param-
eters defined in (5), for k “ 0, 1, ¨ ¨ ¨ ,M .

Lemma 4. Each time an independent obstacle Ok`1 is added
to the workspace, the following holds:

(i) the online omitted product for O0 is given by β
k`1

0 pqq “

β
k

0pqqβk`1pqq;
(ii) the online analytic switch for O0 is given by sk`1

0 pqq “
sk0 pqq

αkpqq p1´sk0 pqqq`sk0 pqq
, where αkpqq “ λk`1{

`

λk βk`1pqq
˘

.

Proof. (Omitted) Available in the supplementary files.

Proposition 2. Each time an independent obstacle Ok`1 is
added to the workspace, the recursive calculation of Fk`1

0 pqq
in (30) for O0 is valid for iteration k “ 0, 1, ¨ ¨ ¨ ,M ´ 1.

Proof. (Sketch) The proof is done by induction. Namely, the
initial value of Fk

0pqq is given by F0
0pqq “ s00pqq r0pqq with

s00pqq “
γGpqq

λ0β0pqq`γGpqq
, which satisfies (28). Now assume that

Fℓ
0pqq “ sℓ0pqq r0pqq and sℓ0pqq “

γGpqqβ
ℓ
0pqq

λℓβ0pqq`γGpqqβ
ℓ
0pqq

hold for

an integer ℓ ě 0. Then, Fℓ`1
0 pqq is derived via (30) as:

Fℓ`1
0 pqq “

}sℓ0pqq r0pqq} r0pqq

αℓpqq }r0pqq} `
`

1´ αℓpqq
˘

}sℓ0pqq r0pqq}
.

Given (4), it holds that β0pqq ě 0 and β
ℓ

0pqq ě 0, which im-
plies that sℓ0pqq P r0, 1s. Therefore, Fℓ`1

0 pqq is simplified as

Fℓ`1
0 pqq “

sℓ0pqq r0pqq

αℓpqq`p1´αℓpqqq sℓ0pqq
Further, Lemma 4 implies that

sℓ0pqq “
αℓ

pqq sℓ`1
0 pqq

pαℓpqq´1q sℓ`1
0 pqq`1

. Combined with Fℓ`1
0 pqq, it yields

that Fℓ`1
0 pqq “ sℓ`1

0 pqq r0pqq, which is consistent with (28),
thus concluding the proof.

Furthermore, the function Fk`1
i`1 pqq for each inner obsta-

cle i “ 0, 1, ¨ ¨ ¨ , k is calculated from Fk`1
0 pqq iteratively by:

Fk`1
i`1 pqq “ Ψa

`

Fk`1
i pqq, ripqq, ri`1pqq, αipqq

˘

, (31)

where ripqq and ri`1pqq are defined in (28) for the i-th and pi`
1q-th obstacles; αipqq “ pβi`1pqqq

2{pβipqqq
2.

Lemma 5. Each time an independent obstacle Ok`1 is added
to the workspace, the following holds:

(i) the online omitted product for Oi`1 is given by β
k`1

i`1 pqq “

β
k`1

i pqq βipqq

βi`1pqq
;

(ii) the online analytic switch for Oi`1 is given by sk`1
i`1 pqq “

sk`1
i pqq

αipqq p1´sk`1
i pqqq`sk`1

i pqq
, where αipqq “ pβi`1pqqq

2{pβipqqq
2.

Proof. (Omitted) Available in the supplementary files.

Proposition 3. Each time an independent obstacle Ok`1 is
added to the workspace, the recursive calculation of Fk`1

i`1 pqq
in (30) for Oi`1 is valid for iteration i “ 0, 1, ¨ ¨ ¨ , k.

Proof. (Sketch) Similar to Proposition 2, the proof is done by
induction. The initial value of Fk`1

i pqq is given by Fk`1
0 pqq “

sk`1
0 pqq r0pqq, which fulfills (28). Now assume that Fk`1

ℓ pqq “

sk`1
ℓ pqq rℓpqq with sk`1

ℓ pqq “
γGpqqβ

k`1
ℓ pqq

γGpqqβ
k`1
ℓ pqq`λk`1βℓpqq

holds

for an integer ℓ ě 0. Then, Fk`1
ℓ`1 pqq is derived via (30) as:

Fk`1
ℓ`1 pqq “

}sk`1
ℓ pqq rℓpqq} rℓ`1pqq

αℓpqq }rℓpqq} `
`

1´ αℓpqq
˘

}sk`1
ℓ pqq rℓpqq}

.

Since sk`1
ℓ pqq P r0, 1s holds, it can be simplified to Fk`1

ℓ`1 pqq “
sk`1
ℓ pqq rℓ`1pqq

αℓpqq `p1´αℓpqqq sk`1
ℓ pqq

. Furthermore, Lemma 5 implies that

sk`1
ℓ pqq “

sk`1
ℓ`1 pqq

αℓpqq p1´sk`1
ℓ`1 pqqq`sk`1

ℓ`1 pqq
. Combined with Fk`1

ℓ`1 pqq,

it yields that Fk`1
ℓ`1 pqq “ sk`1

ℓ`1 pqq rℓ`1pqq, which is consistent
with (28), thus concluding the proof.
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Remark 4. Note that Fk`1
0 pqq in (30) is iterated over the in-

dex k with initial value F0
0pqq while Fk`1

i`1 pqq in (31) is iterated
over the index i with initial value Fk`1

0 pqq. The reason is that
as the pk`1q-th obstacle is added to the existing star world, Fk

0

for the outer boundary should be updated to Fk`1
0 first, and then

the transformation Fk`1
i`1 for each inner obstacle i “ 0, 1, ¨ ¨ ¨ , k

is constructed incrementally based on Fk`1
0 . ■

Overlapping Stars: Secondly, it is also possible that the
new obstacle is overlapping with an existing obstacle. More
precisely, assume that a sequence of star obstacles, denoted
by tOk, k “ 1, ¨ ¨ ¨ , Nu, is added to a star world and over-
lapping with one of the existing obstacles as a leaf. As dis-
cussed in Sec. 4.1.2 for the static scenario, the purging trans-
formation (14) for the leaf obstacles is also constructed by ray
scaling process(18). To be specific, the purging transformation
for the k-th obstacle in one of the tree is restated as:

fkpqq fi idpqq ` σkpqq
`

vkpqq ´ 1
˘

pq ´ pkq, (32)

where σkpqq is the online analytic switch associated with k;
vkpqq is the scaling factor defined in (18); and pk is the common
center between the obstacle Ok and its parent O‹

k.

Definition 6. The online omitted product βkpqq of leaf-purging
transformation for obstacle Ok, after adding the k-th obstacle
for k “ 1, ¨ ¨ ¨ , N , is defined on the forest world F as:

βkpqq fi

´

k´1
ź

j“0,j‰k‹

βjpqq
¯´

ź

jPLztku

βjpqq
¯

β̃kpqq, (33)

where β̃kpqq is defined in (19); βjpqq is the obstacle function
defined in (4); and L is the set of indices for all leaves in F . ■

Definition 7. The online analytic switch σkpqq of leaf-purging
transformation for obstacle Ok, after adding the k-th obstacle
for k “ 1, ¨ ¨ ¨ , N , is defined on the forest world F as:

σkpqq fi
γGpqqβkpqq

ξkβkpqq ` γGpqqβkpqq
, (34)

where γGpqq is the distance-to-goal function; ξk is a positive
parameter associated with k; βkpqq is the online omitted prod-
uct; and βkpqq is the obstacle function. ■

Similar to (28), the intermediate variables are defined as:

Hkpqq fi σkpqq rkpqq, (35)

where rkpqq fi
`

vkpqq ´ 1
˘

pq ´ pkq. Consequently, the trans-
formation from forest world to star world after adding the k-th
star obstacle is given by:

Φk
FÑSpqq fi H1 ˝H ˝ ¨ ¨ ¨ ˝Hkpqq. (36)

Note that for k “ 1, the new obstacle forms a new tree of stars
and the transformation function H1pqq is computed via (19).
Afterwards, each time a new pk ` 1q-th obstacle is added, the
transformation (36) should be updated as follows:

Φk`1
FÑSpqq “ Φk

FÑS ˝Hk`1pqq, (37)

where Hk`1pqq is calculated from Hkpqq iteratively by:

Hk`1pqq “ Ψa pHkpqq, rkpqq, rk`1pqq, αkpqqq , (38)

where Ψap¨q is defined in (29); rk`1pqq and rkpqq are defined
in (35); and αkpqq is another intermediate variable, given by:

αkpqq “ ζk
βk`1pqq β̃kpqqβpk`1q‹pqq

pβkpqqq3 β̃k`1pqqβk‹pqq
,

where ζk “ ξk`1{ξk with ξk and ξk`1 being the design param-
eters from (14); β̃k`1pqq and β̃kpqq are defined as in (19).

Lemma 6. Each time an obstacle Ok`1 is added to the workspa-
ce and overlapping with an existing obstacle, the following holds:

(i) the online omitted product for Ok`1 is given by βk`1pqq “

βkpqq
pβkpqqq

2 β̃k`1pqq βk‹ pqq

β̃kpqq βpk`1q‹ pqq
;

(ii) the online analytic switch for Ok`1 is given by: σk`1pqq “
σkpqq

αkpqqp1´σkpqqq`σkpqq
, whereαkpqq “

ξk`1 βk`1pqq β̃kpqq βpk`1q‹ pqq

ξk pβkpqqq3 β̃k`1pqq βk‹ pqq
.

Proof. (Omitted) Available in the supplementary files.

Proposition 4. Each time an obstacle Ok`1 is added to the
workspace and overlapping with an existing obstacle, the re-
cursive calculation of Hk`1pqq in (38) is valid, for each new
leaf obstacle k “ 0, 1, ¨ ¨ ¨ , N ´ 1.

Proof. Similar to Proposition 3, the proof is done by induction.
The initial value of Hkpqq is given by H1pqq “ σ1pqq r1pqq,
which satisfies (35). Assume that Hℓpqq “ σℓpqq rℓpqq with
σℓpqq “

γGpqqβℓpqq

γGpqqβℓpqq`ξkβℓpqq
holds for an integer ℓ ě 0. Then,

Hℓ`1pqq is computed via (38) as:

Hℓ`1pqq “
}σℓpqq rℓpqq} rℓ`1pqq

αℓpqq }rℓpqq} ` p1´ αℓpqqq }σℓpqq rℓpqq}
.

Since σℓpqq P r0, 1s, it holds that Hℓ`1pqq “
σℓpqq rℓ`1pqq

αℓpqq`p1´αℓpqqqσℓpqq
.

When combined with σℓpqq “
σℓ`1pqq

αℓpqq p1´σℓ`1pqqq`σℓ`1pqq
from

Lemma 6, Hℓ`1pqq “ σℓ`1pqq rℓ`1pqq holds, which is consis-
tent with (35), thus concluding the proof.

Remark 5. Note that the same auxiliary function Ψp¨q in (29)
is used for the recursive computation in (30), (31) and (38). ■

Remark 6. The parameters λk in Def. 5 for k “ 0, 1, ¨ ¨ ¨ ,M ,
and ξk in Def. 7 for k “ 1, 2, ¨ ¨ ¨ , N should satisfy the con-
ditions in Lemma 2, i.e., λk ą Λk for some positive numbers
Λk ą 0; and ξk ą Ξk for some positive numbers Ξk ą 0. ■

Combination of both cases: Overall, the above two cases
can be summarized into a more general formula. Namely, the
recursive transformation from forest of stars to sphere world
after adding the k-th obstacle Ok is given by:

Φk
FÑMpqq fi Φk

SÑM ˝ Φk
FÑSpqq, (39)

where if the new obstacle Ok`1 is added to the workspace
as an independent star, Φk

SÑM is updated to Φk`1
SÑM by (27);
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Figure 13: Snapshots of simulation when the high-level plan and the underlying harmonic potentials are updated, as the robot explores gradually the workspace.
The robot trajectory is depicted in red; the local goal of φNF are highlighted in blue triangle; and the intermediate waypoints in T are marked in blue.

on the other hand, if the new obstacle Ok`1 is overlapping
with any existing obstacle, Φk

FÑS is updated to Φk`1
FÑS by (37).

Moreover, each time an independent star OM`1 is added to the
workspace, the complete harmonic potential function defined in
point world should be updated by the recursive rule:

ϕk`1
P pxq “

K

K ` 1
ϕkPpxq`

1

K ` 1

`

ϕpx, Pdq`ϕpx, PM`1q
˘

,

where ϕkPpxq and ϕk`1
P pxq are the potential function in the k-th

and pk ` 1q-th step; ϕpx, PM`1q is the harmonic term for the
new point obstacle. Given the updated transformation Φk`1

FÑM
and the underlying harmonic potentials in point world ϕk`1

P , the
new navigation function is adapted to φk`1

NF accordingly.

4.2.3. Local Revision of Harmonic Trees
As new obstacles are detected, parts of some Oriented Har-

monic Trees tT
pgℓÑpgℓ`1

u are revised in three main steps: (I)
Trimming of Harmonic trees. For each HT T

pgℓÑpgℓ`1
, find the

vertices that are within the newly-added obstacle, i.e., ν P Ok,
and remove them from the set of vertices V , along with the at-
tached edges; (II) Potential-biased regeneration. To re-connect
the oriented HT to the goal vertex, new vertices and edges are
generated. Depending on the particular method of discretiza-
tion, new vertices could be generated with the bias, e.g., more
towards the area with large change in its potential value; (III)
Path revision. Once new vertices and edges are added, the asso-
ciated edge costs should be re-evaluated. Suppose that at each
time of update H edges have been traversed in total, of which
their actual costs are given by γ‹ “ pγ‹

1 , ¨ ¨ ¨ , γ
‹
Hq. Their es-

timated costs are γ̄ “ pγ1, ¨ ¨ ¨ , γHq with d̄ and Q̄ being the
distance and rotation cost from (26). Then, the weighting pa-
rameters can be updated by: w‹ “ pQ̄⊺Q̄q´1Q̄⊺ pγ‹ ´ d̄q,
which is then used to update all edge costs, even for other HTs.
Afterwards, the revised path is found via the same search algo-
rithm to the goal vertex.

4.2.4. Asymptotic Adaptation of Task Plan
On the highest level, since the HTs are updated, the as-

sociated feasibility and costs in the navigation map G should
be updated accordingly, which in turn leads to a different task
plan ĝ. More specifically, the navigation map G is updated in
two steps: (i) the feasibility of navigation from pg to pg1 in G is
re-evaluated based on whether the path P

pgÑpg1 exists within the
HT T

pgÑpg1 . If not, the transition pg, g1q is removed from the
edge set E. This is often caused by newly-discovered obstacles
blocking some passages; (ii) the costs of transitions within E
are re-computed given the updated path within the new HTs.
Consequently, the navigation map G is up-to-date with the lat-
est environment model. Thus, the task plan pg‹ is re-synthesized
within the updated product Â by searching for a path from the
current product state to an accepting state. In other words, as
the environment is gradually explored, the suffix of the task plan
often would converge to optimal one asymptotically.

4.3. Complexity Analyses
The computational complexity to construct the product pA

is Op|G|2|Aφ|
2q, where |G| is the number of goal regions and

|Aφ| is the number of states within Aφ. The complexity to
construct a HT T is Op|T |q, where |T | is the number of in-
termediate waypoints in the tree structure. For a forest world
with |I| total stars and |F | trees of stars with maximum depth
d, the complexity to compute the initial Harmonic potential Υ is
Op|F |2`d|I|q. Thus, the complexity to compute the complete
G is Op|G|2|Aφ|

2 ` |T |p|F |2 ` d|I|qq. During online adap-
tation, each time an additional obstacle is added, the recursive
update of Υ has complexity Op|F | ` |I|q. The complexity of
local revision of G and T are Op|G1|p|F | ` |I|qq and Op|T 1|q,
respectively, where |G1| is the number of revised vertices, |T 1|

is the number of generated intermediate waypoints.

5. Simulation and Experiments

To further validate the effectiveness of our proposed method,
extensive numerical simulations and hardware experiments are
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conducted, against several state-of-the-art approaches. The pro-
posed method is implemented in Python3 and tested on an Intel
Core i7-1280P CPU. More descriptions, accompanied videos,
and source code can be found in the website Wang (2023).

5.1. Description of Robot and Task
Consider a unicycle robot with the dynamics in (3) that op-

erates within a workspace measuring 7m ˆ 4m, with an ini-
tial model depicted in Fig. 3. The robot occupies a circular
area of radius rr “ 0.1m, and is equipped with a Lidar sen-
sor capable of detecting objects up to a maximum range of
1.0m. The control gains as specified in (24) are set to kυ “ 1.0
and kω “ 0.8, such that the tracking accuracy is below 0.1m.
Both the robot control and the Lidar measurements are updated
at 10Hz. The design parameter for the smooth switch function
in (21) and (22) is set to 0.5. The parameter K in the harmonic
potentials defined in (2) is set to 2 initially. Each time an in-
dependent obstacle is added to the workspace, K is increased
by 1. In addition, the parameter µ is set to 1, while the geo-
metric parameters Ei and EG are both set to 0.02. The parame-
ters λk, ξk in Def. 5 and 7 are set to 5.0ˆ102 and 1.0ˆ105, i.e.,
sufficiently large to accommodate the complex environment.
The weight parameter w utilized in the control cost estimation
in (26) is initially given as r0.1, 0.1s⊺. The set of vertices V
in (7) is generated by the visibility graph from Huang & Chung
(2004) with cost estimation based on (26) and a safety buffer
of 0.15m. Fig. 3 illustrates the complete environment, which
mimics a complex office setting with numerous overlapping ob-
stacles. Initially, the robot only knows the workspace boundary,
the task regions and none of the obstacles.

Regarding the robot task, the workspace consists of a set of
regions of interest, denoted by p1, p2, d1, d2, d3, u1. The high-
level task requires the robot to transport objects from either the
storage room p1 or p2 to the destinations d1, d2, and d3. More-
over, during runtime, a contingent task might be triggered by
an external event and requested in region u1. In such cases, the
robot must prioritize this task for execution. This can be ex-
pressed as the formula φ “

`

♢
`

pp1_p2q^p♢d1q
˘

^
`

♢
`

pp1_

p2q ^ p♢d2q
˘

^
`

♢
`

pp1 _ p2q ^ p♢d3q
˘

^ po Ñ u5q. It is
worth noting that there exist numerous high-level plans to ful-
fill the specified tasks, and their actual costs rely heavily on the
complete workspace, which can only be explored online.

5.2. Results
As visualized in Fig. 13, the robot starts from the initial po-

sition p3.2m, 0.4mq with the orientation π. The task automa-
ton Aφ is constructed with 29 states and 474 edges. The FTS
associated with the regions of interest is initialized as a fully-
connected graph that each edge is built as a HT consisting of
4 intermediate waypoints, with an average computation time of
0.08s. Then, the product automaton pA is constructed with 192
states and 1435 edges, of which the initial task plan is P0 “

p1d1d3d2. Guided by this high-level plan, the robot navigates
first towards task p1 along the intermediate waypoints. Be-
tween any pair of the waypoint pνn, νn`1q, the initial harmonic
potential φNF is constructed by (9) with an average computa-
tion time of 10.46ms. Then, the oriented harmonic fields Υ

Figure 14: (a-e) Final trajectories via the proposed method (in red), OHPF
without the search trees (in green), NF without plan adaptation (in blue), HM
without plan adaptation (in cyan), and RRT‹ without plan adaptation (in or-
ange). The obstacles marked in blue are detected online, while those in light
gray are undetected; (f) Comparison of computation time between our incre-
mental method (in red) and the baselines.

is constructed with almost no additional time, given the de-
sired orientation θn`1. The switch function in (25) is utilized
with ks “ 2.0 and ϵ “ 0.1. Furthermore, the underlying
HT and high-level plan are updated at discrete instants dur-
ing execution, e.g., at t “ 8.7s and 43.2s when new obsta-
cles are detected and estimated, blocking the way to the next
task region. In particular, at t “ 8.7s, the estimated costs for
the plans p1d1d3d2 and p2d1d3d2 are 22.91 and 16.07, respec-
tively. Thus, the robot moves toward p2 instead of p1 due to
the higher cost associated with rotation. The mean computation
time for the new navigation functions at t “ 8.7s and 43.2s are
14.06ms and 15.82ms, respectively. The weight w in the con-
trol cost is updated to r0.67, 0.34s⊺ given the traversed edges
in HT. Afterwards, the navigation map G is updated in 0.16s
given the new visibility graph. At t “ 78.6s, the urgent task in
region u1 is triggered, thus the new subtask is added and the as-
sociated product automaton is reconstructed to get the new task
plan u1d2d3, as shown in Fig. 13. Finally, the whole task is ac-
complished in 123s and the resulting trajectory has a total dis-
tance 27.29m. It is worth pointing out that the final estimated
forest world is not the same as the actual workspace in Fig. 3,
e.g., the L-shape obstacle to the middle-left, and the squircle to
the bottom-right are not fully explored.

5.3. Comparisons
To further demonstrate the effectiveness of our proposed

Harmonic Tree (HT) structure, a quantitative comparison is con-
ducted against five baselines: (i) the oriented harmonic poten-
tial fields (OHPF) proposed in this work with the high-level task
adaptation, but omitting the second-layer search trees; (ii) the
Navigation Function (NF) from Rimon (1990); Loizou (2017)
without the high-level task adaptation; (iii) the harmonic maps
(HM) in Vlantis et al. (2018) via the open-sourced implementa-
tion; (iv) the Non-holonomic RRT‹ in LaValle (2006); Park &
Kuipers (2015) without the high-level task adaptation; and (v)
the conformal navigation transformation (CNT) from Fan et al.
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Table 1: Comparison with Baselines

Method Planning
Time [s]

Execution
Time [s]

Travel Di-
stance [m]

Adap-
tation

Osci-
llation

HT(ours) 4.28 47.64 15.32 Yes No
OHPF 3.19 65.80 18.75 Yes Yes

NF 0.0 85.23 22.16 No Yes
HM 13.09 54.29 18.85 No No

RRT‹ 97.68 69.81 20.50 No No
CNT 47.26 77.27 19.64 No No

(2022), which has to be modified considerably for the complex
workspace here. As summarized in Table 1, the metrics to com-
pare are computation time for each plan synthesis and adapta-
tion, the total cost of final trajectory as the distance travelled,
and whether oscillations appear during execution.

For a more detailed comparison, an obstacle cluttered work-
space of size 5.0m ˆ 5.0m with 20 overlapping obstacles is
considered as shown in Fig. 14. It is worth noting that the as-
sociated forest world has a maximum depth of 4, which is quite
difficult for model-based methods such as NF, OHPF and ours
due to the purging process. The robot starts from p0.4m, 0.4mq
and has a sensing range of 1.0m. The task requires the robot to
surveil the regions of interest d1, d2, d3, d4 in an arbitrary order.
Other parameters are same to Sec. 5.1. The final trajectories and
numerical results are shown in Fig. 14 and Table 1. The pro-
posed HT exhibits lowest cost for task completion with a fast
planning and adaptation, with no collision or oscillations during
execution. As for NF, a blind execution of the initial plan leads
to a more costly trajectory with numerous oscillations since the
gradients near the obstalce can not be tracked perfectly. Be-
sides, the nominal NF can not control the final orientation as
the robot approaches the task areas, resulting in high steering
cost when task regions switch. In contrast, OHPF optimizes the
orientations at each task region and adapts the high-level plan
online as the proposed HT, leading to a much smaller execution
time and overall cost. However, it is worth noting that without
the guidance of search trees, oscillations can still occur close
to obstacles for OHPF. Further, RRT‹ takes significantly more
time to synthesize the initial plan and adapt the new plan, due
to high computationally complexity of collision detection be-
tween samples. Namely, it takes around 98s to compute the
complete plan for RRT‹, compared with merely 4.3s by the
proposed HT. The HM method has a travel distance of 18.85m
with a total planning time 13.09s, which includes 20 times of
replanning and each replanning takes 0.65s. Each obstacle is
represented by average 80 boundary points, which is the mini-
mum number that can ensure safety in our tests. Similarly, the
CNT method takes significantly more planning time and execu-
tion time (close to 26s and 77s, with 20 times of replanning).

Lastly, the computational efficiency of the proposed itera-
tive approach is compared with nominal NF, HM, and CNT, as
summarized in Fig. 14. As the number of obstacles increases,
the computation time of our method remains relatively low due
to its analytical computation, incremental update and the hier-

Figure 15: Left: Recorded execution results; Right: Snapshots of robot trajec-
tories and the potential fields, where obstacles in blue are detected online.

archical structure. In contrast, the nominal NF method requires
nearly twice the time due to the frequent re-calculation of the
potentials from scratch. Furthermore, the computation time for
CNT increases drastically with the number of boundary points
(each obstacle has 150 boundary points), e.g., each replanning
takes more than 8.0s for CNT with 20 obstacles.

5.4. Hardware Experiments

The proposed method is deployed to a differential-driven
robot of radius rr “ 0.2m. As shown in Fig. 15, the workspace
is constructed with dimensions of 5.2m ˆ 5.2m, which has 4
independent and 4 overlapping obstacles. The controller gains
in (24) are set to kυ “ 0.1 and kω “ 0.2, ensuring that the
tracking error remains below 0.2m. The robot state is estimated
using SLAM technology, while the communication between the
robot and the workstation is achieved by ROS with a frequency
of 10Hz. The point clouds are collected by a forward-facing
180˝ Lidar within a radius of 8.0m around the robot. Other pa-
rameters are similar to the simulation. The task is designed to
transport objects from p1 to d1, d2, and d3. The robot starts
from its initial position at p0.0m, 0.0mq. The initial task plan
is derived within 0.09s as p1d1d2d3. The robot adjusts its task
plan and harmonic potentials as 6 obstacles are detected on-
line. As the robot detects more obstacles and familiar with the
workspace, the task plan is updated as p1d2d3d1 and finally
converges to p1d2d3d1. The whole task is accomplished in
338s, of which the complete video can be found in Wang (2023)
The resulting trajectory and snapshots are shown in Fig. 15 with
a total distance 21.74m, which is safe and smooth despite of the
localization and control uncertainties. These results are consis-
tent with the simulations.

6. Conclusion

This work proposes an automated framework for task and
motion planning, employing harmonic potentials for navigation
and oriented search trees for planning. The design and con-
struction of the search tree is specifically customized for the
task automaton and co-designed with the underlying navigation
controllers based on harmonic potentials. Efficient and secure
task execution is ensured for partially-known workspace. As
described earlier, although an online approach is proposed to
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adapt the forest world and obstacle estimation during execu-
tion, it lacks a systematic analysis for more general workspaces,
which is part of our ongoing work. Moreover, the extension to
3D navigation remains our future work.
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