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Abstract— Fleets of unmanned robots can be beneficial for
the long-term monitoring of large areas, e.g., to monitor
wild flocks, detect intruders, search and rescue. Monitoring
numerous dynamic targets in a collaborative and efficient way
is a challenging problem that requires online coordination
and information fusion. The majority of existing works either
assume a passive all-to-all observation model to minimize
the summed uncertainties over all targets by all robots, or
optimize over the jointed discrete actions while neglecting the
dynamic constraints of the robots and unknown behaviors of
the targets. This work proposes an online task and motion
coordination algorithm that ensures an explicitly-bounded esti-
mation uncertainty for the target states, while minimizing the
average number of active robots. The robots have a limited-
range perception to actively track a limited number of targets
simultaneously, of which their future control decisions are all
unknown. It includes: (i) the assignment of monitoring tasks,
modeled as a flexible size multiple vehicle routing problem
with time windows (m-MVRPTW), given the predicted target
trajectories with uncertainty measure in the road-networks; (ii)
the nonlinear model predictive control (NMPC) for optimizing
the robot trajectories under uncertainty and safety constraints.
It is shown that the robots can switch between active and
inactive roles dynamically online as required by the unknown
monitoring task. The proposed methods are validated via large-
scale simulations of up to 100 robots and targets.

I. INTRODUCTION

With the rapid development of robotic perception and mo-
tion techniques, mobile robots have been deployed to monitor
areas that are otherwise too large or hostile for humans.
Fleets of unmanned aerial vehicles (UAVs) and unmanned
ground vehicles (UGVs) can be particularly suitable for
this purpose, via wireless communication and collaborative
execution, to e.g., map time-varying fields [1], [2], [3], track
moving targets [4], [5] and explore unknown territory [6]. As
a fundamental technique to many applications, active moni-
toring of unknown dynamic targets has attracted significant
attention, see [7], [8], [9], [10]. It remains a challenging
problem as it involves the online coordination of monitoring
tasks among the robots, and the real-time adaptation of their
trajectories w.r.t. the observed behaviors of the targets.

A. Related Work
As the most relevant work, [7], [11] pioneered the problem

of active information acquisition (AIA) with sensing robots.
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Fig. 1. Illustration of the considered scenario. Left: 3 UAVs (in blue)
are actively monitoring 10 targets (in red) within a road network, with 7
inactive ones (in orchid) that are recruited later online; Top-right: Evolution
of estimation uncertainty for all targets below a specified upper-bound (in
black); Bottom-right: Number of active UAVs in the fleet and number of
targets assigned to each active UAV.

The proposed solutions exploit the separation principles un-
der the linear observation model and utilize an offline search
algorithm over the joint state-and-information space, via the
forward value iteration (FVI) and later the reduced forward
value iteration (RVI). This line of methods has been extended
to multi-robot fleets, where an optimal, non-myopic, and
centralized sampling-based solution is proposed in our earlier
work [5], [12]; and decentralized myopic planners can be
found in [8], [9], [10], [13]. The target tracking problem
is combined with robot localization in [14] for only one
target. Recent work [4] utilizes graph neural networks to
learn distributed and scalable action policies from the optimal
planner. However, most of these works assume a fixed size
of the robotic team with discretized control inputs and a
linear observation model, and more importantly the targets
move with a known model, i.e., known dynamics and control
inputs. Instead, behaviors of the considered targets including
velocities and paths within the road network are all unknown,
thus requiring online prediction and tracking.

On the other hand, another line of research formulates the
multi-target monitoring problem as a sequential high-level
assignment problem, where robots are assigned to targets
for reducing uncertainty. A distributed Hungarian method is
proposed in [15], which however only applies to one-to-one
assignments. Numerous works [14], [16], [17] reformulate
it as a simultaneous action and target assignment (SATA)
problem, and propose distributed approximation algorithms
such as the linear programs. However, the target trajecto-
ries are often assumed to be given, and the robots move
synchronously with a set of pre-defined motion primitives.
The work [18] considers a complementary problem to this
work, which maximizes the number of targets being tracked
by a fixed number of robots via a 2-approximation greedy
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solution. Recent work [19], [20] studies the robust assign-
ment strategies against possible attacks in communication
and sensing, which also assumes a synchronized team motion
with a set of finite primitives. Instead, asynchronous and
timed robot trajectories are computed recursively online in
this work given the observed target behaviors.

B. Our Method

This work addresses the dynamic monitoring problem
from a practical perspective, i.e., how many robots are
needed to monitor a set of dynamic targets with an upper-
bounded uncertainty, and how to control their trajectories.
Different from many existing works, these targets follow
a constant-velocity model, but with unknown velocity on
each road, and unknown path within the road network. The
proposed solution consists of two-layers: (i) the first layer
explicitly formulates the assignment problem of the active
monitoring tasks, under the constraints that each robot can
only monitor a maximum number of targets simultaneously.
The assignment scheme first over-approximates the monitor-
ing quality given the predicted trajectories and uncertainties
of all targets, then formulates a flexible-size multiple vehicle
routing problem with time windows (m-MVRPTW); (ii) the
second layer then formulates a constrained optimal control
problem given the assignment results. The robot trajectories
are optimized online via the distributed nonlinear model
predictive control (NMPC), where the dynamical constraints
and predicted target trajectories are all incorporated. Both
optimizations can be solved via off-the-shelf solvers.

Main contribution of this work is three-fold: (i) the novel
formulation of active monitoring problem for unknown tar-
gets with an upper-bounded uncertainty and a minimum
fleet. To the best of our knowledge, this problem has not
been addressed in related work; (ii) the proposed two-level
solution adapts the fleet size and the robot trajectories online,
according to real-time measurements of the target behavior;
(iii) the scalable solution that allows the deployment of a
few UAVs to monitor a large number of dynamic targets.

II. PROBLEM DESCRIPTION

A. Robots and Targets

Consider a team of N autonomous robots that coexist
within a complex workspace W Ă R3, where the total
number N might be time-varying thus Nptq for time t ą

0. Without loss of generality, each robot n P N ptq fi

t1, ¨ ¨ ¨ , Nu follows the same generic nonlinear dynamics:

xnpt ` 1q fi f
`

xnptq, unptq
˘

, (1)

where fp¨q is the dynamic model; xnptq P W and unptq P U
are the state and control input of robot i at time step t ě 0.
It is assumed in this work that the robots can communicate
freely via a distributed network. Note that the total number N
is not fixed, rather a part of the objective to minimize.

On the other hand, there are M targets that move dynam-
ically within a known road network. Denote by R fi pV, Eq

this network, where V Ă W is the set of hub points and
E Ă V ˆ V is a set of straight roads connecting these hubs.

Each target follows a sequence of roads to move from its
starting point to the destination points, which are all unknown
to the robots. On different roads, each target m P M fi

t1, ¨ ¨ ¨ ,Mu follows the same constant-velocity model [7]
but with different velocities, i.e.,

ympt ` 1q fi Gymptq ` wmptq, (2)

where G fi rI2, hI2;0, I2s with sampling time h ą 0;
ymptq P W is the target state at t ě 0, and wmptq „

N p0, Wmq is the Gaussian noise with covariance Wm.
Namely, the target may switch to a different road and move
with an unknown velocity, i.e., following an unknown path.

B. Active Sensing Model

Moreover, each robot n P N is equipped with a perception
module to actively track the targets via action sn : Z Ñ 2M:

znmptq fi h
`

xnptq, ymptq
˘

` vptq, @m P snptq; (3)

where hp¨q maps the current states of robot n and target m
to the measurement znm, i.e., robot n w.r.t. target m; and
vptq „ Gp0, V

`

xnptq, ymptq
˘

q is the Gaussian noise with a
covariance V ptq that varies by the robot and target states.

Remark 1. Note that the observation model hp¨q is a general
nonlinear and differentiable function, not necessarily linear
w.r.t. ym. Thus, the separation principle does not hold
anymore [7]. Consequently, the offline approaches in [8],
[10], [12] cannot be applied; instead, the target state and
covariance are estimated simultaneously online. ■

Denote by n P N Ă N if robot n becomes active. There
are two constraints for its choice of actions snptq, i.e.,

dpxnptq, ymptqq ă Rn, |snptq| ă Cn; (4)

where (i) dp¨q is a distance measure and Rn ą 0, as typical
sensors such as radar and lidar, are only valid within a limited
range. Outside this range, its uncertainty V ptq in (3) is set to
infinity. Note that Rn might be different across the robots; (ii)
there is often maximum number of targets each robot n can
track simultaneously due to limited computation or energy
resources, denoted by Cn ě 1.

Remark 2. Note that the definition of action snp¨q is essen-
tial, and different from most existing work. Namely, some
work [4], [7], [10] and our previous work [12], [21] assume
that the robot can obtain measurements of all targets at all
time, while others [14], [16], [17] limit to only one target. In
practice, there is often either an energy or computation cost
associated with detection and tracking one target. Thus, the
robot has to actively decide which targets to measure within
its sensing range, under a maximum number. ■

C. Target State Estimation and Tracking

Initially, each target m P M has a prior Gaussian distri-
bution for its initial state ymp0q „ Gpµ0

m, Σ0
mq, which is

known to all robots. For time t ą 0, each robot n P N can
move around and make observations of some targets via (3),
i.e., Zmptq fi tznmptq, @n P N u, which may contain time-
stamped observations of all targets if measured, otherwise set



to empty. Given the accumulated measurements Zmp0 : tq,
the posteriori distribution of target m is denoted by:

pymptq „ G
`

µmptq, Σmptq
˘

, (5)

which is the estimated mean and covariance of target m
at time t, e.g., conveniently by the EKF [7], [22] when
the target moves along one fixed road as described in the
sequel. However, if target m is not monitored when it
crosses a K-way intersection, its estimation pymptq changes
by approximating the K possible directions statistically, i.e.,

µmptq, Σmptq fi Gapx
´

␣

µk
mptq, k “ 1, ¨ ¨ ¨ ,K

(

¯

, (6)

where Gapxp¨q is the Gaussian approximation of a set of
points; }pµmpt´1q´ν} ă ε, for some intersection ν P V and
a small margin ε ą 0; and µk

mptq is the predicted next state
if target m follows the k-th direction at time t ´ 1. In other
words, the uncertainty increases drastically if a target crosses
intersections without being monitored. Thus, the determinant
of the covariance matrix det

`

Σmptq
˘

is used to evaluate the
quality of state estimation for target m up to time t.

D. Problem Statement

The considered problem can be stated as a long-term
constrained optimization problem, i.e.,

min
N ptq, tpun,snqu

#

lim
TÑ8

1

T

T
ÿ

t“0

Nptq

+

s.t. det
`

Σmptq
˘

ă γm, @m, @t; (7a)
(1) ´ (6), @n, @m, @t; (7b)

where Nptq ą 0 is the number of active robots in N ptq
for t ě 0; the objective is the average number of active
robots in the long horizon; γm ą 0 is a user-specified
bound on the estimation uncertainty for each target m P M
in (7a); constraints in (7b) are the aforementioned dynamic
and observation models, and how the estimation uncertainties
of the targets evolve under the measurements.

Note that γm above is a key design parameter that greatly
influence the system behavior. For instance, if γm is the
minimum variance that can be achieved if N0 robots monitor
one target at all time, then the required team size is at least
N0M{pmaxmtCmuq. On the other hand, if γm is sufficiently
large, one robot could suffice by observing each target in
sequence. More numerical analyses are given in Sec. IV.

Remark 3. The objective in (7) boils down to extending the
longevity of each robot, e.g., when a UAV is inactive for the
monitoring task, it can hover, glide or even park to charge
battery until being active next time. ■

III. PROPOSED SOLUTION

Due to the dynamic nature of the proposed problem, the
proposed solution consists of two hierarchical components,
i.e., the dynamic assignment of monitoring tasks based on
the estimated target behaviors with a minimum fleet size;
and the optimal control of each robot given the assigned
targets to ensure the estimation uncertainty is bounded. Both

Road µ̂m(t) Σ̂m(t) Σ̃m(t)

t0 ts te t0 + Ts t0 ts te
t0 + Ts

Fig. 2. Illustration of how the posteriori uncertainty rΣm changes by (10),
compared with the prior pΣm: on one road (Left) and an interaction (Right).

components are executed in a receding horizon fashion, but
with different frequencies and horizons.

A. Dynamic Assignment of Monitoring Tasks

1) Prior and Posteriori Estimation of Target Trajectory:
Let the estimated state of target m be pµmpt0q, Σmpt0qq

at time t0 ě 0. Then, assuming that no measurements are
obtained during the future period t P rt0, t0`Tss for Ts ą 0,
the predicted evolution of mean and covariance is given by:

pµmpt ` 1q “ G pµmptq,

pΣmpt ` 1q “ G pΣmptqG ` Wm,

ppµmpt ` 1q, pΣmpt ` 1qq “ Gapx
`

tpµk
mptqu

˘

,

(8)

where ppµm, pΣmq are the predicted mean and covariance; Wm

is the uncertainty from (2); the last case is when target m
is predicted to cross an intersection from (6). Thus, the
prior estimation of target m during rt0, t0 ` Tss is denoted
by pµmptq and pΣmptq; and pymptq fi ppµmptq, pΣmptq.

Then, assume that one robot n actively monitors target m
during the period rts, tes, where t0`Ts ą te ą ts ą t0. The
resulting change in its covariance is given by the EKF [7],
[22], [23] via the prediction and update as follows:

Σ1
mpt ` 1q “ G rΣmptqG ` Wm, @t P rts, tes;

rΣmpt ` 1q “ Σ1
mptq ´ KmptqHmptqΣ1

mptq;

Kmptq “ Σ1
mptqH⊺

mptqR´1
m ptq

Rmptq “ HmptqΣ1
mptqH⊺

mptq ` V pxnptq, pµmptqq;

Hmptq “ ∇yhpx, yq|pxnptq, pµmptqq;

(9)

where xnptq is the robot state; rΣmptq is the posteriori
estimation uncertainty assuming that robot n starts mon-
itoring target m from time ts; Hmptq is the linearized
observation model of hp¨q given xnptq and pµmptq; V p¨q is
the state-dependent uncertainty during observation from (3);
and rΣmptsq is initialized according to the prior estimation.
Afterwards, for t ą te without measurements, rΣmptq evolves
in the same way as (8). In other words, the posteriori
estimation rΣmptq is computed in three segments as follows:

rΣmptq “ pΣmptq, @t P rt0, tsq;

rΣmpt ` 1q “ ρpostprΣmptq,xnptqq, @t P rts, teq;

rΣmpt ` 1q “ ρpriprΣmptqq, @t P rts, t0 ` Tss;

(10)

where functions ρpostp¨q and ρprip¨q encapsulate (9) and (8),
respectively. An illustration is given in Fig. 2.



2) Formulation of Task Assignment Problem: Clearly, the
computation of rΣmptq above depends on the robot trajec-
tory xnptq. Due to the inherent combinatorial complexity
of the assignment process, an approximation method is
introduced here to bound the duration required for robot n
to monitor target m without specifying the trajectory xnptq,
such that the uncertainty measure detprΣmptqq above is
reduced below γm in (7a). Instead, the exact optimization
of robot trajectories is performed in Sec. III-B afterwards.
More specifically, consider first the following assumption:

Assumption 1. For arbitrary ppµmptq, pΣmptqq above such
that pΣmpt0q ă γm and a large enough Ts, there always
exists a period rts, tes and a choice of xnptq such that
detprΣmptqq ă γm, @t P rte, t0 ` Tss. ■

The above assumption basically states that one robot is
sufficient to monitor one target while ensuring that its
uncertainty stays below the given bound. This assumption
stems from the application that a few UAVs are deployed to
monitor a large number of dynamic targets. If more than one
robot is required to monitor even a single target, then there
are more robots than targets, which is not the focus here.

More specifically, the starting time ts is chosen be-
tween rt0, tss, where ts is the latest starting time such
that: pΣmpts ´ 1q ă γm and pΣmptsq ě γm hold. Given a
choice of ts, the ending time te is minimized to monitor
more targets, i.e., as the earliest instant such that: xnptq “

minxnptq detprΣmpt ` 1qq, @t P rts, tes and detprΣmpts `

Tsqq ă γm hold, where rΣmptq is determined by (10); the first
condition enforces that robot n chooses the best observation
position to reduce the uncertainty the most during each
step of the monitoring period pts, teq; the second condition
requires that the terminal uncertainty is below γm. If both
conditions hold, the choice of schedule pts, teq is called
feasible. Thus, for a robot-target pair pn, mq, the time to
start monitoring ts has a window rt0, tss. The monitoring
plan for each robot n is defined as:

τn fi ptm1
s , tm1

e q ¨ ¨ ¨ ptmL
s , tmL

e q, (11)

where ptmℓ
s , tmℓ

e q is the schedule for monitoring target mℓ P

M, @ℓ “ 1, ¨ ¨ ¨ , L. The plan length is determined by the
elapsed time tmL

e ´ tm1
s . A complete plan is feasible if all

contained schedules are feasible.

Problem 1. Given the prediction of all targets
␣

ppµmptq, pΣmptqq,@m
(

, determine first (I) the minimum
number of active robots Nptq; and then (II) a feasible
monitoring plan τn for each n P N ptq, such that the
maximum plan length of all robots is minimized. ■

3) Solution Based on m-MVRPTW: The solution to
Problem 1 is based on formulating it as a flexible-size
multiple vehicle routing problem with time windows (m-
MVRPTW) [24], [25]. In particular, three steps are followed:
(I) A service location is created for each target m P M
at pm fi pµmpt̂mq for t̂m “ ptm0 ` t

m
s q{2, with a strict

time window wm fi rtm0 , t
m
s s. Its service time Tm is given

τ1

τ2

Fig. 3. Illustration of the assignment algorithm given the predicted
trajectories with covariances, i.e., 5 targets monitored by 2 robots.

by: Tm fi maxt1
sPrtm0 , t

m
s s |t1

e ´ t1
s|, where t1

s is a valid
starting time and t1

e is the associated ending time; Tm is
the longest duration for target m; (II) The transition time
from target m1 to target m2 is computed as: Tm1m2 fi

maxtm1
e ,t

m2
s

t}pµm1
ptm1
e q´ pµm2

ptm2
s q}{vnu, where tm1

e is the
allowed ending time for target m1; tm2

e is the allowed
starting time for target m2; and vn is the average velocity
of robot n; (III) The m-MVRPTW problem is formulated
as M service locations at tpm,@mu with a strict time
window twm,@mu, among which the time matrix is given
by tTm1

` Tm1m2
,@m1,m2u. Each robot can depart from

its current location and end anywhere. The proposed algo-
rithm gradually adds robots to the active fleet, ranked by
their minimum distance to any target. Given a fixed fleet
size, the standard MVRPTW can be solved by any solver,
e.g., OR-Tools [26]. The outputs are the set of required
robots N Ď N with cardinality N ; and their schedule τn

from (11), with the sequence of assigned targets mn fi

m1 ¨ ¨ ¨mL and the associated service schedule tn, @n P N .

B. Informative Trajectory Planning via Distributed NMPC

Given the schedule tτn,@n P N u, each robot n should
optimize its actual trajectory to execute this schedule, while
ensuring the uncertainty constraints. The main challenges are
two-fold: (i) both the robot dynamics and the uncertainty
bounds are nonlinear and (ii) the target behavior is unknown
and only observed online. Thus, the framework of distributed
nonlinear model predictive control (NMPC) is applied [27],
[28], for the trajectory optimization problem below.

Problem 2. Given the schedule τn, compute the optimal
control and action pun, snq for each active robot n P N ,
such that the uncertainties of all assigned targets mn are
bounded and the control cost is minimized. ■

Consider another planning horizon Tc ą 0, which is
different and shorter than the horizon Ts of task assign-
ment in Sec. III-A. Given the prediction of target behav-
iors

␣

ppµmpt0q, pΣmpt0qq,@m P mn

(

at time t0, the NMPC
problem is formulated for each robot n P N as follows:

min
pun, snq

ÿ

tPTc

Υpxnptq, unptqq

s.t. xnpt ` 1q fi f
`

xnptq, unptq
˘

;

|snptq| ă Cn; det
`

rΣmptq
˘

ă γm;

rΣmpt ` 1q “ ρ
`

rΣmptq, xnptq, pympt0q
˘

;

(12)

where Tc fi tt0, ¨ ¨ ¨ , t0`Tcu; Υ : WˆU Ñ R` is a general
function to measure the control cost given a choice of control



Algorithm 1: Uncertainty-bounded Monitoring
Input: M, R, tpymp0qu, Ts, Tc.
Output: N ptq, tpymptqu, tpun, snqu.

1 while not terminated do
2 Compute tpymptqu by (8);
3 Formulate m-MVRPTW by Sec. III-A.3;
4 Derive N ptq and tpmn, tnqu, e.g., via [26];
5 Formulate NMPC (12) for each robot n P N ptq;
6 Derive solution tpun, snqu, e.g., via [30];
7 Each robot n P N ptq applies punptq, snptqq;
8 Make observations tznmu;
9 Update tpympt ` 1qu by (14);

10 t Ð t ` 1;

input at certain states; the uncertainty measure rΣmptq is the
posteriori estimation from (9); function ρ summarizes the
updating rules from (10) given the current prediction pympt0q;
and these constraints hold for all t P Tc and m P mn.

Note that the above constrained optimization is different
from the standard NMPC in [27] due to the variable sn as the
monitoring action to decide which targets to monitor, which
is discrete thus yielding a combinatorial complexity over mn.
Instead, a hierarchical structure is followed to decouple the
optimization over sn and un. Specifically, given the current
states of robot n and all targets in mn at each time step t0,
the first Cn targets in mn with the largest predicted prior
uncertainty pΣm within Tc, i.e.,

snptq “ max_k
k“Cn,mPmn

!

max
tPTc

detppΣmptqq

)

, @t P Tc; (13)

where max_kp¨q is the operator for choosing the k largest
elements in a set; snptq is kept constant in the optimiza-
tion (12). Note that if |mn| ď Cn, all targets are monitored.
Once sn is determined, the optimization (12) is transformed
into a nonlinear optimization problem, where the variables
are: (i) the robot state xnptq and control input unptq at
each step t P Tc; and (ii) the posteriori uncertainty rΣmptq
at each step t P Tc and for each target m P sn. The
determinant detprΣmptqq of a square matrix can be computed
analytically [29], i.e., as a polynomial in the traces of the
powers of rΣmptq. Thus, the formulated problem can be
solved by off-the-shelf solvers, e.g., CasADi [30]. The
results are the desired control unptq in the planning horizon.

Remark 4. Related work often assumes either a discretized
control space [4], [7], [12], [31] or pre-defined motion
primitives [16], [17], [20], which cannot be applied here for
trajectory optimization under dynamic constraints. ■

C. Overall Framework

As summarized in Alg. 1, the above two modules are
executed online in a receding horizon fashion with different
frequencies. More specifically, at each time step t ą 0,
the prior estimation pymptq is computed via (8) for each
target. Based on this estimation, the monitoring tasks are
assigned to a subset of robots by solving (8), yielding the
planned schedule τn. Then, the optimization for control and

Fig. 4. Left: Snapshot at t “ 52s where 4 robots are active. Right: Final
trajectories of all robots with marked status.

monitoring action is formulated via (12) given τn and pymptq,
yielding the optimal control sequence un and the monitored
action sn. Afterwards, each robot moves by executing the
next control input unptq, while obtaining possible new
measurements tznm,@m P snu. Given these measurements,
the posteriori estimation pympt`1q “ ppµmpt`1q, pΣmpt`1qq

is updated for each observed target as follows:

pµmpt ` 1q “ pµmptq ` Km

`

znm ´ hpxnptq, pµmptqq
˘

,

pΣmpt ` 1q “ ρpostppΣmptq, xnptqq,
(14)

where Km is computed as in (9) and ρpostp¨q defined in (10).
This procedure is repeated until the system is terminated.
It is worth noting that while the trajectory optimization is
executed at every time step locally by each robot, the module
of task assignment is executed at a much lower frequency via
a central coordinator, which can be periodic or event-based,
e.g., each time the set sn computed in (13) changes.

Lastly, note that even as approximated sub-problems, both
Problems 1 and 2 have high computation complexity. In
particular, Problem 1 remains NP-hard [24] as being a more
general problem than the classic MVRP, while there is no
guarantee that Problem 2 converges to the global optimal
solution [32] as being nonlinear and strongly non-convex.
Nonetheless, for moderate problem sizes e.g., 10 robots
and 10 targets, these problems can be solved in 0.89s and
0.54s. More details are given in the next section.

IV. NUMERICAL EXPERIMENTS

Extensive large-scale simulations are presented in this
section. The proposed method is implemented in Python3
and tested on a laptop with an Intel Core i7-1280P CPU.
Simulation videos can be found in the supplementary files.

A. Description

As shown in Fig. 4, consider 10 targets moving on the
road-networks with a size of 10m ˆ 10m, and there are 10
robots in the fleet. Each robot follows the standard unicycle
dynamics for UAV flying at a fixed height. The observation
model is the commonly-used range-and-bearing model [10],
[12], where the uncertainty V in (3) grows linearly in range
and bearing. The exact mathematical model is omitted here
due to limited space. The limited range in (4) is set to
Rn “ 1.5m and the capacity Cn “ 5 uniformly for all



time [s] time [s]
Fig. 5. Comparison against four baselines: the maximum uncertainty of
all targets (Left) and the number of active robots within the fleet (Right).

robots. Initially, the target states are chosen randomly along
the roads with a small uncertainty, while the robots start
from the base. During execution, the targets choose the next
road randomly at intersections, which are unknown to the
robots. The threshold for uncertainty is set to γm “ 0.1 for
all targets. Moreover, the horizon for dynamic assignment
is set to Ts “ 50 and updated every 10s, while the NMPC
planning horizon is set to Tc “ 10 and updated every 0.1s.
The simulation is terminated at 100s.

B. Results

The final results are shown in Fig. 1 and 4. The assignment
method via m-MVRPTW takes in average 0.85s, which
generates a varying number of active robots (minimum 3 and
maximum 6). For instance, it is enough at 31s for 3 robots
to monitor all 10 targets, while the rest becomes inactive.
At 50s, more robots are recruited given the predicted uncer-
tainty. Moreover, the average computation time of NMPC
is 0.57s and the resulting trajectory often covers multiple
targets simultaneously. The estimation uncertainties of all
targets are below the specified bound 0.1, while the average
number of active robots is 4.3 and the average number of
targets assigned to each robot is 2.3. The final trajectories for
all the robots are depicted in Fig. 4, which switches between
being active and inactive.

C. Comparisons

To further validate the effectiveness of the proposed frame-
work (as Ours), a quantitative comparison is conducted
against four baselines (two ablation studies and two com-
mon approaches): (i) NMPC, where the first layer of task
assignment is skipped and each robot is assumed to track
one single target at each time step; (ii) MVRP, where the
proposed assignment algorithm remains but the trajectory
optimization is replaced by a simple strategy that tracks the
assigned targets in order; (iii) No-Bound, where the objective
in (12) is changed to minimize the summed uncertainties of
all targets (see [7], [8], [10]), i.e., not as a hard constraint;
(iii) No-Forks, where the target model follows (2) but
without considering the unknown behavior at intersections.
The compared metrics are the planning time, the success
rate, the maximum uncertainty of all targets, and finally the
average number of active robots.

The results are summarized in Fig. 5. It can be seen
that both the proposed method and the NMPC can ensure

TABLE I
SCALABILITY ANALYSIS RESULTS

Param. Values Success
Rate [%]

MVRP
Time [s]

NMPC
Time [s]

Average
N

Nominal* 100.0 0.80 0.57 5.0

M
20 100.0 1.37 0.54 10.3
100 100.0 14.2 0.56 56.3

γm
10´3 98.3 1.24 0.53 5.6
10´5 83.8 4.43 0.67 7.7

Cn
3 100.0 0.74 0.40 6.6
7 100.0 0.67 0.83 3.3

* Nominal case: M “ 10, γm “ 10´1, and Cn “ 5.

that the estimation uncertainty is below the given bound
at all time, while others fail. However, the NMPC requires
that all robots are active at all time, while ours requires in
average 4 robots. In contrast, the MVRP method optimizes
the task assignment, but the estimation uncertainty might
exceed the bound as the motion strategy cannot react to all
assigned targets. Similarly, despite of faster planning, the No-
Bound method loses the guarantee on uncertainty as the hard
constraints are relaxed. At last, the necessity of modeling
intersection is clear with the No-Forks method, where the
uncertainty increases drastically above the bound when the
targets cross intersections. Our method however can predict
this change and monitor these targets in advance.

D. Scalability Analysis

Scalability of the proposed algorithm is analyzed w.r.t.
three aspects: the number of targets M , the upper bound of
uncertainty γm, and the capacity Cn. The recorded metrics
are similar to the previous part, including the detailed plan-
ning time for MVRP and NMPC. The results are summarized
in Table I, where the nominal setup is from Sec. IV-B.
Notably, when M is increased to 20 and 100, the success
rate remains 100%. Planning time of MVRP is increased
significant as the number of tasks has increased to 100,
while the NMPC takes roughly the same time as each robot
solve it locally. It is worth noting that the ratio between
the average number of active robots and the total number
of targets remains constant, meaning that the fleet efficiency
does not degrade as M increases. Furthermore, when the
threshold γm is decreased to 10´3 and even 10´5, the
success rate decreases as the NMPC is harder to solve with
a tighter bound, yielding a much higher number of active
robots. Lastly, when Cn is decreased to 3, the planning time
of NMPC is decreased as the number of constraints in (12) is
reduced, and the average number of active robots is increased
as one robot can monitor less targets simultaneously. The
opposite holds for Cn “ 7, where the average number of
active robots is as low as 3.3 out of 10 in total.

V. CONCLUSION

This work proposes an online task and motion coordina-
tion algorithm for large-scale monitoring tasks over road-
networks. It ensures an explicitly-bounded estimation uncer-
tainty for the targets, while employing a minimum number of
heterogeneous robots. Future work involves a time-varying
number of targets and complex tasks.
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